Wang S, Wang Y, Ma J, Huang C, Chen L. Portable smartphone-assisted highly sensitive detection of mercury ions based on gold nanoparticle-modified NH
2-UiO-66 metal-organic framework.
Anal Bioanal Chem 2024;
416:1001-1010. [PMID:
38097760 DOI:
10.1007/s00216-023-05090-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
A novel portable smartphone-assisted colorimetric method was reported for the determination of Hg2+ with good analytical performance. A Zr(IV)-based metal-organic framework functionalized with amino groups (NH2-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg2+, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH2-UiO-66), accelerating the oxidization of zymolyte 3,3',5,5'-tetramethylbenzidine (TMB). In the meantime, the color of the reaction solution turned a vivid blue, and the red, green, and blue (RGB) values of the solution color changed accordingly. On account of this strategy, the quantitative detection of Hg2+ could be achieved. After the optimization of the experiment conditions, the average color intensity (Ic) resulting from RGB values was linear related to the concentration of Hg2+ from 10 to 100 nM, accompanied with a detection limit (LOD) down to 5.4 nM calculated by 3σ/S. The successful application of the designed method has been promoted to detect Hg2+ in some water samples, displaying a great potential in practical application. Furthermore, the use of a smartphone made our proposed method simple and accurate, and thus puts forward a possible way for in situ and real-time monitoring.
Collapse