1
|
Olowosoke CB, Munir A, Sofela SO, Osuagwu OL, Eze CJ, Taiwo O, Babatope VO, Khedraoui M, Ojo OA, Chtita S, Ibisanmi TA. Deciphering the in silico molecular mechanism of coumestrol activity for uterine fibroids remedy: a promising estrogenic target drug candidate. J Biomol Struct Dyn 2025:1-26. [PMID: 40247615 DOI: 10.1080/07391102.2025.2487191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/26/2024] [Indexed: 04/19/2025]
Abstract
Uterine fibroids (UF) are reproductive conditions that occur as tumours in the womb. It is a gynecological outgrowth of diverse sizes often allied with infertility risks that might require surgery to reduce the complication in the worst-case scenario in women. Recent studies have uncovered that estrogen can induce and facilitate other target pathways' action on target cells for UF's pathogenesis, among the targets probed for pharmaceutical intervention. This study screens the interaction effects of 32 phytochemicals from indigenous and adopted potent Chinese plants and herbs; Chamomile, Pomegranate, Red clover, Cinnamomum, and Date palm, against estrogen receptor alpha (ESRα) to serve for anti-UF drug candidates using in silico tools through the molecular mechanisms. The interaction identifies coumestrol as the best-docked candidate (-9.6 kcal/mol) with a correlation to the binding free energy (-30.487 kcal/mol) as compared to the standard drug tamoxifen (-9.3 kcal/mol; -46.928 kcal/mol). The downstream post-docking evaluation reveals coumestrol to have excellent pharmacokinetics, drug-likeness, leadlikeness (no violation), less toxic (LD50; 2991 mg/kg), and highly interactive with ESRα. Coumestrol was top-ranked for ESRα (1QKU) target by PharmMapper among 300 human protein targets, with a z-score of 1.19368. The density functional theory (DFT) and dynamic simulation of 200 ns reveal regions of coumestrol structure and its complex that contribute to the chemical reactivity, stability, flexibility, and compactness of druggability. Ultimately, coumestrol emerged as a potential candidate suitable for anti-UF management, therefore future direction for its application should be on the design and synthesis of new structural derivatives for further in silico, in vitro, and in vivo studies.
Collapse
Affiliation(s)
- Christopher Busayo Olowosoke
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Osogbo, Osun State, Nigeria
| | - Aqsa Munir
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Province Punjab, Pakistan
| | - Salimat Opeyemi Sofela
- Institute of Bioinformatics and Molecular Therapeutics, Osogbo, Osun State, Nigeria
- Department of Chemistry, University of Lagos, Akoka, Lagos State, Nigeria
| | - Olachi Lilian Osuagwu
- Institute of Bioinformatics and Molecular Therapeutics, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Federal University of Technology Owerri, Imo State, Nigeria
| | - Chioma Joy Eze
- Research Department, Institute of Nursing Research, Osogbo, Osun State, Nigeria
| | - Odunayo Taiwo
- Department of Biochemistry, Chrisland University Ajebo Road Abeokuta, Ogun State, Nigeria
| | | | - Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oluwafemi Adeleke Ojo
- Bowen University SDG 03 (Good Health and Wellbeing Research Cluster), Iwo, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Tope Abraham Ibisanmi
- Institute of Bioinformatics and Molecular Therapeutics, Osogbo, Osun State, Nigeria
- Department of Microbiology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
2
|
Devnath HS, Biswas P, Oisay DS, Medha MM, Islam MN, Biswas B, Hossain A, Hasan MN, Ahmed KS, Hossain H, Sadhu SK. Bioactive phytocompounds profiling and the evaluation of analgesic, anti-inflammatory, and antihyperglycemic potential of Argyreia capitiformis (Poir.) Ooststr.: A combined in vitro, in vivo, and computational investigations. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118949. [PMID: 39419301 DOI: 10.1016/j.jep.2024.118949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Argyreia capitiformis (Poir.) Ooststr. (Convolvulaceae) is traditionally used by the Chakma community in the hilly region of Bangladesh to treat minor disorders such as pain. AIM OF THE STUDY This study intended to determine the secondary metabolites to identify bioactive compounds and evaluate antioxidant potential, in vitro anti-inflammatory and in vivo analgesic, anti-inflammatory, and antihyperglycemic activities of A. capitiformis along with in silico investigations. MATERIALS AND METHODS Chemical profiling was carried out using HPLC and GC-MS analysis. The analgesic effect was measured employing tail immersion and acetic acid-induced writhing methods. Following protein denaturation and formalin-induced paw edema, anti-inflammatory activity was studied. The antihyperglycemic potential was assessed using an oral glucose tolerance test (OGTT), while further mechanistic investigation was conducted using an alpha-glucosidase enzyme inhibitory assay. Simulations and molecular docking analyses were performed to ascertain the stability and binding affinities of the drug-protein complex. RESULTS A. capitiformis ethanolic extract confirmed the presence of phenolics, alkaloids, flavonoids, terpenoids, tannins, gums, steroids, and reducing sugars. HPLC analysis revealed the presence of eight polyphenolic compounds, the most abundant of which was myricetin (64.10 ± 0.14 mg per 100 g dry extract). Moreover, the GC-MS analysis revealed twenty-four molecules, the most important of which was 2,4-bis (dimethylbenzyl)-6-t-butylphenol (9.19%). The concentrations of total flavonoids, total terpenoids, total phenolics, and total tannins were ascertained to be 142.48 mg QE/g, 173.1 mg UAE/g, 19.35 mg GAE/g, and 13.05 mg GAE/g, respectively. Furthermore, the plant extract had a total antioxidant capacity of 388 mg AAE/g. In the writhing assay, the plant extract suppressed writhing by 59.73% and 76.99% at the doses of 250 and 500 mg/kg, respectively, compared to the standard diclofenac Na 87.17%, and in the tail immersion assay, the plant extract displayed a maximum average reaction time of 1.94 and 2.40 s at the doses of 250 and 500 mg/kg, respectively as compared to the control tramadol 2.84 s at 60 min. In an in vitro anti-inflammatory assay, the plant extract possessed an IC50 of 95.51 μg/ml while diclofenac Na (standard drug) was found to be 69.50 μg/ml. Afterward, in vivo anti-inflammatory activity was observed in mice over a period, particularly after 3 h, the plant extract exerted maximum percent inflammation inhibitions of 36.36% and 45.45% at the doses of 250 and 500 mg/kg, respectively whereas ibuprofen the standard drug (100 mg/kg) exhibited 61.82%. The plant extract demonstrated antihyperglycemic activity, lowering blood sugar levels to 5.7 and 4.62 mM at doses of 250 and 500 mg/kg, respectively, as opposed to 8.58 mM in the control group. Meanwhile, the standard drug glibenclamide (5 mg/kg) dropped blood glucose levels to 2.38 mM in 60 min after glucose administration. Molecular docking (MD) and molecular dynamics simulation (MDS) studies support the stability of the protein complex responsible for exerting pharmacological activities. CONCLUSION A. capitiformis extract exhibited strong medicinal values supporting its traditional uses.
Collapse
Affiliation(s)
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | | | | | - Md Naharul Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science & Technology, Jashore, 7408, Bangladesh.
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh.
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh.
| | | |
Collapse
|
3
|
Azam MNK, Biswas P, Khandker A, Tareq MMI, Tauhida SJ, Shishir TA, Bibi S, Alam MA, Zilani MNH, Albekairi NA, Alshammari A, Rahman MS, Hasan MN. Profiling of antioxidant properties and identification of potential analgesic inhibitory activities of Allophylus villosus and Mycetia sinensis employing in vivo, in vitro, and computational techniques. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118695. [PMID: 39142619 DOI: 10.1016/j.jep.2024.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Amia Khandker
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhanmondi, Dhaka, 1209, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
4
|
Hasan Zilani MN, Nahar N, Shome A, Tareq MMI, Biswas P, Bibi S, Alshammari A, Albekairi NA, Alqahtani HM, Hasan MN. Crotalaria quinquefolia L. Revealed as a Potential Source of Neuropharmacophore in Both Experimental and Computational Studies. Chem Biodivers 2025; 22:e202401257. [PMID: 39283969 DOI: 10.1002/cbdv.202401257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
Herbal remedies have shown great promise for improving human health. The plant Crotalaria quinquefolia is used in folk medicine to cure different diseases, including scabies, fever, discomfort, and lung infections. The present research was designed to explore bioactive compounds and evaluate the neuropharmacological effects of C. quinquefolia extract through in vivo and in silico approaches. Different secondary metabolites as well as the antioxidant activity were measured. Furthermore, chemical compounds were identified by HPLC and GCMS analysis. The neuropharmacological activity was examined by hole cross, hole board, open field, Y-maze, elevated plus maze, and thiopental sodium induced sleeping time tests in mice at doses of 100 mg/kg and 200 mg/kg b.w. (p.o). Besides, an in-silico study was performed on proteins related to Alzheimer disease. The extract showed a significant content of secondary metabolites and antioxidant potential. The in-silico analysis showed that myricetin, quercetin, rutin, and kaempferol have good binding affinity with studied proteins, and QSAR studies revealed potential benefits for treating dementia, and age-related macular degeneration. The findings of the present neurological activity collectively imply that the extract has strong CNS depressant and anxiolytic activity. Therefore, C. quinquefolia can be a potential source of compounds to treat Alzheimer disease.
Collapse
Affiliation(s)
- Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Nazmun Nahar
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Anamika Shome
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hosam M Alqahtani
- Directorate of Medical Service, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Chimplee S, Sama-ae I, Sangkanu S, Mitsuwan W, Chuprom J, Boonhok R, Khan DA, Biswas P, Nazmul Hasan M, Tabo HA, Salibay CC, Wilairatana P, Pereira ML, Nawaz M, Bodade R, Sundar SS, Paul AK, Nissapatorn V. Anti-adherent effects of Rhizophora apiculata bark and leaf extracts and computational prediction of the effects of its compound on β-tubulin interaction in Acanthamoeba triangularis genotype 4. Vet World 2024; 17:2829-2845. [PMID: 39897349 PMCID: PMC11784052 DOI: 10.14202/vetworld.2024.2829-2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Acanthamoeba, an opportunistic protozoan, exists widely in natural sources and can cause infections in humans and animals. The absence of effective monotherapy after the initial infection leads to chronic disease and recurrence. Tubulin protein is a vital target for design-targeted drug discovery. Anti-tubulin drugs are also used to treat Acanthamoeba infections, although resistance to these drugs has been observed. Therefore, it is necessary to identify a new targeted drug for Acanthamoeba infections. Therefore, this study aimed to assess the in vitro activity of ethanol extracts of Rhizophora apiculata extracts (RAE) against Acanthamoeba spp. and to predict its chemical compound on β-tubulin interaction. Materials and Methods In this study, anti-Acanthamoeba activity with minimal inhibitory concentration (MIC) and minimal parasiticidal concentration (MPC) determination of ethanolic RAE from leaves, blossoms, buds, branches, and barks was tested on four Acanthamoeba trophozoites and cysts: Acanthamoeba triangularis WU 19001, Acanthamoeba polyphaga American Type Culture Collection (ATCC) 30461, Acanthamoeba castellanii ATCC 50739, and A. castellanii ATCC 30010. The inhibitory effect on adherence was determined by the ability of Acanthamoeba adherence on 96-well plates, and its adhesive acanthopodia structure was evaluated using scanning electron microscopy analysis. In addition, the minimum cytotoxic concentrations (MCC) of R. apiculata leaf extract (RALE) and bark extract (RABE) were evaluated on Vero and HaCaT cell lines using the MTT assay. Phytochemical compounds from RALE and RABE were also analyzed by gas chromatography-mass spectrometry (GC-MS). Molecular docking and molecular dynamic analysis predicted the binding sites of chemicals in extracts and β-tubulin protein. Results The results revealed that A. triangularis and A. polyphaga trophozoites had the highest inhibition at 90% at a MIC of 8 mg/mL after treatment with RALE and RABE, respectively, at 24 h. Those MPC values were exhibited at 16 mg/mL against A. triangularis trophozoites. In addition, both extracts inhibited the adhesive properties of all Acanthamoeba approximately 80%-90% at 4 mg/mL, as well as adherent structural acanthopodia loss. MCC was 0.25 mg/mL, provided to be harmless to mammalian cells. GC-MS analysis supported that 8 and 11 major phytochemicals were from RABE and RALE, respectively. Molecular docking and molecular dynamics demonstrated that Acanthamoeba-β-tubulin exhibited potent root-mean-square deviation, root mean square fluctuation, and binding free energy values with clionasterol (from RABE and RALE) and stigmasterol (from RALE). Based on our results, ethanolic RABE and RALE exhibited anti-Acanthamoeba activity in reducing adhesion. In silico showed that promising clionasterol and stigmasterol interacted with a targeting β-tubulin. Conclusion The RABE and RALE exhibited a potential anti-adherent effect on A. triangularis, low toxicity, and the clionasterol and stigmasterol in RABE and RALE predicted to interact the targeted β-tubulin. These agents may be used as alternative therapeutic agents in the management of disease using a sustainable one-heath approach.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- General Education Department, School of Languages and General Education, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Julalak Chuprom
- General Education Department, School of Languages and General Education, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Hazel Anne Tabo
- Department of Biological Sciences, College of Science, De La Salle University-Dasmarinas, Cavite, Philippines
| | - Cristina C. Salibay
- Department of Biological Sciences, College of Science, De La Salle University-Dasmarinas, Cavite, Philippines
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maria L. Pereira
- Department of Medical Sciences and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ragini Bodade
- Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
| | - Shanmuga S. Sundar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation, Paiyanoor, Chennai, Tamil Nadu, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
6
|
Alkhateeb MA, Aljarba NH, Yousafi Q, Anwar F, Biswas P. Elucidating gastric cancer mechanisms and therapeutic potential of Adociaquinone A targeting EGFR: A genomic analysis and Computer Aided Drug Design (CADD) approach. J Cell Mol Med 2024; 28:e70133. [PMID: 39434198 PMCID: PMC11493557 DOI: 10.1111/jcmm.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Gastric cancer predominantly adenocarcinoma, accounts for over 85% of gastric cancer diagnoses. Current therapeutic options are limited, necessitating the discovery of novel drug targets and effective treatments. The Affymetrix gene expression microarray dataset (GSE64951) was retrieved from NCBI-GEO data normalization and DEGs identification was done by using R-Bioconductor package. Gene Ontology (GO) analysis of DEGs was performed using DAVID. The protein-protein interaction network was constructed by STRING database plugin in Cytoscape. Subclusters/modules of important interacting genes in main network were extracted by using MCODE. The hub genes from in the network were identified by using Cytohubba. The miRNet tool built a hub gene/mRNA-miRNA network and Kaplan-Meier-Plotter conducted survival analysis. AutoDock Vina and GROMACS MD simulations were used for docking and stability analysis of marine compounds against the 5CNN protein. Total 734 DEGs (507 up-regulated and 228 down-regulated) were identified. Differentially expressed genes (DEGs) were enriched in processes like cell-cell adhesion and ATP binding. Eight hub genes (EGFR, HSPA90AA1, MAPK1, HSPA4, PPP2CA, CDKN2A, CDC20, and ATM) were selected for further analysis. A total of 23 miRNAs associated with hub genes were identified, with 12 of them targeting PPP2CA. EGFR displayed the highest expression and hazard rate in survival analyses. The kinase domain of EGFR (PDBID: 5CNN) was chosen as the drug target. Adociaquinone A from Petrosia alfiani, docked with 5CNN, showed the lowest binding energy with stable interactions across a 50 ns MD simulation, highlighting its potential as a lead molecule against EGFR. This study has identified crucial DEGs and hub genes in gastric cancer, proposing novel therapeutic targets. Specifically, Adociaquinone A demonstrates promising potential as a bioactive drug against EGFR in gastric cancer, warranting further investigation. The predicted miRNA against the hub gene/proteins can also be used as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Nada H. Aljarba
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Qudsia Yousafi
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Fatima Anwar
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
7
|
Nur Kabidul Azam M, Biswas P, Mohaimenul Islam Tareq M, Ridoy Hossain M, Bibi S, Anisul Hoque M, khandker A, Ashraful Alam M, Nazmul Hasan Zilani M, Shahedur Rahman M, Albekairi NA, Alshammari A, Nazmul Hasan M. Identification of antidiabetic inhibitors from Allophylus villosus and Mycetia sinensis by targeting α-glucosidase and PPAR-γ: In-vitro, in-vivo, and computational evidence. Saudi Pharm J 2024; 32:101884. [PMID: 38090733 PMCID: PMC10711519 DOI: 10.1016/j.jsps.2023.101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder arising from insulin deficiency and defectiveness of the insulin receptor functioning on transcription factor where the body loses control to regulate glucose metabolism in β-cells, pancreatic and liver tissues to homeostat glucose level. Mainstream medicines used for DM are incapable of restoring normal glucose homeostasis and have side effects where medicinal plant-derived medicine administrations have been claimed to cure diabetes or at least alleviate the significant symptoms and progression of the disease by the traditional practitioners. This study focused on screening phytocompounds and their pharmacological effects on anti-hyperglycemia on Swiss Albino mice of n-hexane, ethyl acetate, and ethanol extract of both plants Mycetia sinensis and Allophylus villosus as well as the in-silico investigations. Qualitative screening of phytochemicals and total phenolic and flavonoid content estimation were performed significantly in vitro analysis. FTIR and GC-MS analysis précised the functional groups and phytochemical investigations where FTIR scanned 14, 23 & 17 peaks in n-hexane, ethyl acetate, and ethanol extracts of Mycetia sinensis whereas the n-hexane, ethyl acetate, and ethanol extracts of Allophylus villosus scanned 11 peaks, 18 peaks, and 29 peaks, respectively. In GC-MS, 24 chemicals were identified in Mycetia sinensis extracts, whereas 19 were identified in Allophylus villosus extracts. Moreover, both plants' ethyl acetate and ethanol fractioned extracts were reported significantly (p < 0.05) with concentrations of 250 mg and 500 mg on mice for oral glucose tolerance test, serum creatinine test and serum alkaline phosphatase test. In In silico study, a molecular docking study was done on these 43 phytocompounds identified from Mycetia sinensis and Allophylus villosus to identify their binding affinity to the target Alpha Glucosidase (AG) and Peroxisome proliferator-activated receptor gamma protein (PPARG). Therefore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, quantum mechanics-based DFT (density-functional theory), and molecular dynamics simulation were done to assess the effectiveness of the selected phytocompounds. According to the results, phytocompounds such as 2,4-Dit-butyl phenyl 5-hydroxypentanoate and Diazo acetic acid (1S,2S,5R)-2-isopropyl-5-methylcyclohexyl obtained from Mycetia sinensis and Allophylus villosus extract possess excellent antidiabetic activities.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Md. Anisul Hoque
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Amia khandker
- Biotechnology division, TechB Nutrigenomics, Dhanmondi, Dhaka 1209, Bangladesh
| | - Md Ashraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
8
|
Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, Zghair AN, Dhama K, Sharma A, Kumar V, Sharma AK, Wang H. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155100. [PMID: 37801892 DOI: 10.1016/j.phymed.2023.155100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.
Collapse
Affiliation(s)
- Sonal Datta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Nirmala Sehrawat
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Abdulrazzaq N Zghair
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Aanchal Sharma
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Vikas Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector-82-A, IT City Road, Mohali, Punjab 140306, India.
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Li J, Shen Y. A clathrin-related protein FaRRP1/SCD2 integrates ABA trafficking and signaling to regulate strawberry fruit ripening. J Biol Chem 2023; 299:105250. [PMID: 37714466 PMCID: PMC10582773 DOI: 10.1016/j.jbc.2023.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Abscisic acid (ABA) is a critical regulator for nonclimacteric fruit ripening such as in the model plant of strawberry (Fragaria × ananassa). Although FaRRP1 is proposed to participate in clathrin-mediated endocytosis of ABA, its action molecular mechanisms in ABA signaling are not fully understood. Here, using our isolated FaRRP1 (ripening-regulation protein) and candidate ABA receptor FaPYL2 and FaABAR from strawberry fruit, a series of silico and molecular interaction analyses demonstrate that they all bind to ABA, and FaRRP1 binds both FaPYL2 and FaABAR; by contrast, the binding affinity of FaRRP1 to FaPYL2 is relatively higher. Interestingly, the binding of FaRRP1 to FaPYL2 and FaABAR affects the perception affinity to ABA. Furthermore, exogenous ABA application and FaRRP1 transgenic analyses confirm that FaRRP1 participates in clathrin-mediated endocytosis and vesicle transport. Importantly, FaRRP1, FaPYL2, and FaABAR all trigger the initiation of strawberry fruit ripening at physiological and molecular levels. In conclusion, FaRRP1 not only binds to ABA but also affects the binding affinity of FaPYL2 and FaABAR to ABA, thus promoting strawberry fruit ripening. Our findings provide novel insights into the role of FaRRP1 in ABA trafficking and signaling, at least in strawberry, a model plant for nonclimacteric fruit ripening.
Collapse
Affiliation(s)
- Jiajing Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
10
|
Liu J, Liu R, Deng R, Zheng S, Shen Z. Antibacterial activity and antibacterial mechanism of flavaspidic acid BB against Staphylococcus haemelyticus. BMC Microbiol 2023; 23:276. [PMID: 37773054 PMCID: PMC10540430 DOI: 10.1186/s12866-023-02997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Staphylococcus haemolyticus (S. haemolyticus) is the main etiological factor in skin and soft tissue infections (SSTI). S. haemolyticus infections are an important concern worldwide, especially with the associated biofilms and drug resistance. Herein, we investigated the inhibitory effect of Flavaspidic acid BB obtained from plant extractions on clinical S. haemolyticus strains and their biofilms. Moreover, we predicted its ability to bind to the protein-binding site by molecular simulation. Since the combination of Hsp70 and RNase P synthase after molecular simulation with flavaspidic acid BB is relatively stable, enzyme-linked immunosorbent assay (ELISA) was used to investigate Hsp70 and RNase P synthase to verify the potential antimicrobial targets of flavaspidic acid BB. RESULTS The minimum inhibitory concentrations (MIC) of flavaspidic acid BB on 16 clinical strains of S. haemolyticus was 5 ~ 480 µg/mL, and BB had a slightly higher inhibitory effect on the biofilm than MUP. The inhibitory effect of flavaspidic acid BB on biofilm formation was better with an increase in the concentration of BB. Molecular simulation verified its ability to bind to the protein-binding site. The combination of ELISA kits showed that flavaspidic acid BB promoted the activity of Hsp70 and inhibited the activity of RNase P, revealing that flavaspidic acid BB could effectively inhibit the utilization and re-synthesis of protein and tRNA synthesis, thus inhibiting bacterial growth and biofilm formation to a certain extent. CONCLUSIONS This study could potentially provide a new prospect for the development of flavaspidic acid BB as an antibacterial agent for resistant strains.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ruijie Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Rongrong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shiqian Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
- Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Zheng J, Miao F, Wang Z, Ma Y, Lin Z, Chen Y, Kong X, Wang Y, Zhuang A, Wu T, Li W. Identification of MDM2 as a prognostic and immunotherapeutic biomarker in a comprehensive pan-cancer analysis: A promising target for breast cancer, bladder cancer and ovarian cancer immunotherapy. Life Sci 2023; 327:121832. [PMID: 37276911 DOI: 10.1016/j.lfs.2023.121832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The murine double minute 2 (MDM2) gene is a crucial factor in the development and progression of various cancer types. Multiple rigorous scientific studies have consistently shown its involvement in tumorigenesis and cancer progression in a wide range of cancer types. However, a comprehensive analysis of the role of MDM2 in human cancer has yet to be conducted. METHODS We used various databases, including TIMER2.0, TCGA, GTEx and STRING, to analyze MDM2 expression and its correlation with clinical outcomes, interacting genes and immune cell infiltration. We also investigated the association of MDM2 with immune checkpoints and performed gene enrichment analysis using DAVID tools. RESULTS The pan-cancer MDM2 analysis found that MDM2 expression and mutation status were observably different in 25 types of cancer tissue compared with healthy tissues, and prognosis analysis showed that there was a significant correlation between MDM2 expression and patient prognosis. Furthermore, correlation analysis showed that MDM2 expression was correlated with tumor mutational burden, microsatellite instability and drug sensitivity in certain cancer types. We found that there was an association between MDM2 expression and immune cell infiltration across cancer types, and MDM2 inhibitors might enhance the effect of immunotherapy on breast cancer, bladder cancer and ovarian cancer. CONCLUSIONS The first systematic pan-cancer analysis of MDM2 was conducted, and it demonstrated that MDM2 was a reliable prognostic biomarker and was closely related to cancer immunity, providing a potential immunotherapeutic target for breast cancer, bladder cancer and ovarian cancer.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yaqin Chen
- Nursing Department of Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xu Kong
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
12
|
Sharif MA, Khan AM, Salekeen R, Rahman MH, Mahmud S, Bibi S, Biswas P, Nazmul Hasan M, Islam KMD, Rahman SM, Islam ME, Alshammari A, Alharbi M, Hayee A. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J 2023; 31:101681. [PMID: 37576860 PMCID: PMC10415228 DOI: 10.1016/j.jsps.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.
Collapse
Affiliation(s)
- Md. Arman Sharif
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Arman Mahmud Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Hafijur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Sakib Mahmud
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - S.M. Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|