1
|
Sapkal GT, Anjum F, Salam A, Mukherjee B, Chandra S, Bala P, Garg R, Sharma S, Kaushik K, Nandi CK. NIR emissive probe for fluorescence turn-on based dead cell sorting and in vivo viscosity mapping in C. elegans. J Mater Chem B 2024; 13:184-194. [PMID: 39530775 DOI: 10.1039/d4tb01945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dead cell sorting is pivotal and plays a very significant role in homeostasis. Apoptosis and ferroptosis are the two major regulatory cell death processes. Apoptosis is a programmed cell death process, while ferroptosis is a regulatory cell death process. Monitoring the dead cells coming out from these processes is extremely important to stop various cellular dysfunctions. Here, we present a single NIR emissive probe that can observe both apoptotic and ferroptosis regulatory cell deaths. We were able to directly visualize the dead cells in both animal and plant cells upon a significant increase in the fluorescence intensity of the probe. During cell death, the increased cytoplasm viscosity restricted the rotor motion and helped in the fluorescence turn-on of the probe. Lysosomal viscosity was found to play a crucial role in the ferroptosis pathway. On the other hand, the probe was not only efficient in mapping the viscosity in various parts of live Caenorhabditis elegans (C. elegans) bodies but also able to differentiate between live and dead animals.
Collapse
Affiliation(s)
- Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Shilpa Chandra
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Purabi Bala
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| |
Collapse
|
2
|
Ma Q, Liu S, Xu J, Mao G, Wang G, Hou S, Ma Y, Lian Y. A coumarin-naphthalimide-based ratiometric fluorescent probe for nitroxyl (HNO) based on an ICT-FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124876. [PMID: 39059141 DOI: 10.1016/j.saa.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Nitroxyl (HNO) is an important reactive nitrogen that is associated with various states in physiology and pathology and plays a unique function in living systems. So, it is important to exploit fluorescent probes with high sensitivity and selectivity for sensing HNO. In this paper, a novel ratiometric fluorescent probe for HNO was developed utilizing intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) mechanisms. The probe selected coumarin as energy donor, naphthalimide as energy receptor and 2-(diphenylphosphino)benzoate as the sensing site for detecting HNO. When HNO was not present, the 2-(diphenylphosphino)benzoate unit of the probe restricted electron transfer and the ICT process could not occur, leading to the inhibition of FRET process as well. Thus, in the absence of HNO the probe displayed the intrinsic blue fluorescence of coumarin. When HNO was added, the HNO reacted with the 2-(diphenylphosphino)benzoate unit of the probe to yield a hydroxyl group which resulting in the opening of ICT process and the occurring of FRET process. Thus, after providing HNO the probe displayed yellow fluorescence. In addition, the probe showed good linearity in the ratio of fluorescence intensity at 545 nm and 472 nm (I545 nm/I472 nm) with a concentration of HNO (0.1-20 μM). The probe processed a detection limit of 0.014 μM and a response time of 4 min. The probe also specifically identified HNO over a wide pH scope (pH = 4.00-10.00), including physiological conditions. Cellular experiments had shown that this fluorescent probe was virtually non-cytotoxic and could be applied for ratiometric sensing of HNO in A549 cells.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, PR China.
| | - Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junhong Xu
- Department of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
3
|
Zhao W, Wang C, Zhu Y, Wang Q, Xu X, Shao Z, Chen M, Feng Y, Meng X. Visualized Tracking and Multidimensional Assessing of Mitochondria-Associated Pyroptosis in Cancer Cells by a Small-Molecule Fluorescent Probe. Anal Chem 2024; 96:6381-6389. [PMID: 38593059 DOI: 10.1021/acs.analchem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Pyroptosis is closely related to the development and treatment of various cancers; thus, comprehensive studies of the correlations between pyroptosis and its inductive or inhibitive factors can provide new ideas for the intervention and diagnosis of tumors. The dysfunction of mitochondria may induce pyroptosis in cancer cells, which can be reflected by the fluctuations of the microenvironmental parameters in mitochondria as well as the changes of mitochondrial DNA level and morphology, etc. To precisely track and assess the mitochondria-associated pyroptosis process, simultaneous visualization of changes in multiphysiological parameters in mitochondria is highly desirable. In this work, we reported a nonreaction-based, multifunctional small-molecule fluorescent probe Mito-DK with the capability of crosstalk-free response to polarity and mtDNA as well as mitochondrial morphology. Accurate assessment of mitochondria-associated pyroptosis induced by palmitic acid/H2O2 was achieved through monitoring changes in mitochondrial multiple parameters with the help of Mito-DK. In particular, the pyroptosis-inducing ability of an antibiotic doxorubicin and the pyroptosis-inhibiting capacity of an anticancer agent puerarin were evaluated by Mito-DK. These results provide new perspectives for visualizing mitochondria-associated pyroptosis and offer new approaches for screening pyroptosis-related anticancer agents.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chengyuan Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianyun Xu
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zonglong Shao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Yang M, Silverstein RL. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants (Basel) 2024; 13:83. [PMID: 38247507 PMCID: PMC10812781 DOI: 10.3390/antiox13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress increases the risk for clinically significant thrombotic events, yet the mechanisms by which oxidants become prothrombotic are unclear. In this review, we provide an overview of cysteine reactivity and oxidation. We then highlight recent findings on cysteine oxidation events in oxidative stress-related thrombosis. Special emphasis is on the signaling pathway induced by a platelet membrane protein, CD36, in dyslipidemia, and by protein disulfide isomerase (PDI), a member of the thiol oxidoreductase family of proteins. Antioxidative and chemical biology approaches to target cysteine are discussed. Lastly, the knowledge gaps in the field are highlighted as they relate to understanding how oxidative cysteine modification might be targeted to limit thrombosis.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-924, Boston, MA 02115, USA
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Hub 8745, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Gong X, Guo R, Li X, Yang Y, Lin W. A red-emitting mitochondria targetable fluorescent probe for detecting viscosity in HeLa, zebrafish, and mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:293-300. [PMID: 38115761 DOI: 10.1039/d3ay01488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Viscosity, an essential parameter of the cellular microenvironment, has the ability to indicate the condition of living cells. It is closely linked to numerous diseases like Alzheimer's disease, diabetes, and cardiovascular disorders. Therefore, it is necessary to design tools to effectively monitor viscosity changes, which could provide promising avenues for therapeutic interventions in these diseases. Herein, we report a novel mitochondria-targeting fluorescent probe GX-VS which was suitable for the detection of viscosity changes in vivo and in vitro. The probe GX-VS had many advantages such as long emission wavelength (650 nm), large Stokes shift (105 nm), significant fluorescence enhancement (59-fold), high sensitivity, good biocompatibility and so on. Biological experiments showed that the probe could target mitochondria and detect viscosity alterations in HeLa cells. Moreover, it has been successfully utilized to monitor viscosity changes induced by lipopolysaccharides (LPS) in inflammatory zebrafishes and living mice, which further underscored the capacity of GX-VS to explore fluctuations in viscosity within living organisms.
Collapse
Affiliation(s)
- Xi Gong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Rui Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Xiaoya Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Yingjie Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
6
|
Nguyen VN, Li H. Recent Development of Lysosome-Targeted Organic Fluorescent Probes for Reactive Oxygen Species. Molecules 2023; 28:6650. [PMID: 37764426 PMCID: PMC10535290 DOI: 10.3390/molecules28186650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Reactive oxygen species (ROS) are extremely important for various biological functions. Lysosome plays key roles in cellular metabolism and has been known as the stomach of cells. The abnormalities and malfunctioning of lysosomal function are associated with many diseases. Accordingly, the quantitative monitoring and real-time imaging of ROS in lysosomes are of great interest. In recent years, with the advancement of fluorescence imaging, fluorescent ROS probes have received considerable interest in the biomedical field. Thus far, considerable efforts have been undertaken to create synthetic fluorescent probes for sensing ROS in lysosomes; however, specific review articles on this topic are still lacking. This review provides a general introduction to fluorescence imaging technology, the sensing mechanisms of fluorescent probes, lysosomes, and design strategies for lysosome-targetable fluorescent ROS probes. In addition, the latest advancements in organic small-molecule fluorescent probes for ROS detection within lysosomes are discussed. Finally, the main challenges and future perspectives for developing effective lysosome-targetable fluorescent ROS probes for biomedical applications are presented.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Computer Science, Duy Tan University, Da Nang 550000, Vietnam
| | - Haidong Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|