1
|
Fardjaoui NEH, El Berrichi FZ, Duplay J, Slatni I, Mekhlouf H, Djebiha S, Mahieddine D, Benamar R, Bouchemal N, Gasmi B, Rekkab I, Maoui A. Optimization of adsorption performance by mesoporous materials developed from local clays and zeolite. Application in the treatment of real pharmaceutical effluents. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 60:28-38. [PMID: 39719030 DOI: 10.1080/03601234.2024.2444123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The treatment of effluents from the pharmaceutical industry currently remains a major challenge due to their impact on the environment and public health along with the cost of treatments. Considering these issues, our work focused on the development of materials with effective adsorption properties to treat industrial effluents based on locally available and inexpensive clays and zeolite. Local Algerian kaolin (Djebel Debbagh), palygorskite (Ghoufi) and zeolite (Tinbdar) were treated thermally and chemically prior to synthesis into mesoporous materials of hexagonal structure using pluronic P123 as surfactant. The raw and synthesized materials were tested in the adsorption of pharmaceutical effluents from industries producing antihistamine and diuretic-type drugs. Analyses of physicochemical parameters (chemical and biological oxygen demand) as well as measurement of the concentrations of PO4³-, NO2-, NH4+ of effluents were done before and after the adsorption process by the raw and mesoporous clays and zeolite. The results showed a reduction of all parameters with greater efficiency of mesoporous DD3 which indicated that it is a promising mesoporous adsorbent for treating pharmaceutical effluents. Reduced rates of these three physical parameters (PO4³-, NO2-, NH4+) in the case of NEUROVIT® by mesoporous DD3 are 61%, 98% and 77%. However, PO4³-, NO2- elimination percentages DIAPHAG® onto DD3 are 79% and 87%, respectively.
Collapse
Affiliation(s)
| | | | - Joelle Duplay
- ITES-Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, Strasbourg Cedex, France
| | - Ibtissem Slatni
- Laboratoire Génie Civil et d'Hydraulique, Université 8 Mai 1945, Guelma, Algeria
| | - Hamdi Mekhlouf
- Laboratoire Génie Civil et d'Hydraulique, Université 8 Mai 1945, Guelma, Algeria
| | - Sara Djebiha
- Département des sciences de la matière, Université 8 Mai 1945, Guelma, Algeria
| | - Dhikra Mahieddine
- Département des sciences de la matière, Université 8 Mai 1945, Guelma, Algeria
| | - Raja Benamar
- Research Unit 'Advanced Technologies for Environment and Smart Cities', Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Noureddine Bouchemal
- Laboratory of Process Engineering, Amar TELIDJI University, Laghouat, Algeria
- Technical Platform of Physico-Chemical Analysis (PTAPC-Laghouat-CRAPC), University of Amar TELIDJI, Laghouat, Algeria
| | - Brahim Gasmi
- Laboratoire de Physique des Couches Minces et Application, Université Mohamed Khider Biskra, Biskra, Algeria
| | - Ilhem Rekkab
- Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
| | - Ammar Maoui
- Laboratoire Génie Civil et d'Hydraulique, Université 8 Mai 1945, Guelma, Algeria
| |
Collapse
|
2
|
Xu X, Guo Y, Liu Y, Liu Z, Zhang L. Rapid and enhanced detection of sulfonamide antibiotic using task-specific ionic liquids nanoconfined in tunable nanoporous carbons. Talanta 2024; 285:127396. [PMID: 39708566 DOI: 10.1016/j.talanta.2024.127396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection. The ILs@PC demonstrated enhanced adsorption efficiency and sensitivity for sulfonamide antibiotics (SAs) compared to the pristine PC, attributed to the nanoconfinement effect of the ILs and the influence of pore volume on this effect. When integrated with high-performance liquid chromatography (HPLC), the ILs@PC-based DSPE method achieved a detection limit of 0.75-1.88 μg L-1 for SAs, along with satisfactory recoveries of 86.0 %-111.9 %. Additionally, a portable syringe device was developed to facilitate rapid on-site extraction and enrichment of SAs. The practicality of this method was validated through its successful application in detecting SAs in real samples, including lake water and milk. This approach highlights its potential for efficient and rapid monitoring of antibiotic residues in both environmental and food systems.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yuchi Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zhuang Liu
- College of Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
3
|
Wilar G, Suhandi C, Wathoni N, Fukunaga K, Kawahata I. Nanoparticle-Based Drug Delivery Systems Enhance Treatment of Cognitive Defects. Int J Nanomedicine 2024; 19:11357-11378. [PMID: 39524925 PMCID: PMC11550695 DOI: 10.2147/ijn.s484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticle-based drug delivery presents a promising solution in enhancing therapies for neurological diseases, particularly cognitive impairment. These nanoparticles address challenges related to the physicochemical profiles of drugs that hinder their delivery to the central nervous system (CNS). Benefits include improved solubility due to particle size reduction, enhanced drug penetration across the blood-brain barrier (BBB), and sustained release mechanisms suitable for long-term therapy. Successful application of nanoparticle delivery systems requires careful consideration of their characteristics tailored for CNS delivery, encompassing particle size and distribution, surface charge and morphology, loading capacity, and drug release kinetics. Literature review reveals three main types of nanoparticles developed for cognitive function enhancement: polymeric nanoparticles, lipid-based nanoparticles, and metallic or inorganic nanoparticles. Each type and its production methods possess distinct advantages and limitations. Further modifications such as coating agents or ligand conjugation have been explored to enhance their brain cell uptake. Evidence supporting their development shows improved efficacy outcomes, evidenced by enhanced cognitive function assessments, modulation of pro-oxidant markers, and anti-inflammatory activities. Despite these advancements, clinical trials validating the efficacy of nanoparticle systems in treating cognitive defects are lacking. Therefore, these findings underscore the need for researchers to expedite clinical testing to provide robust evidence of the potential of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
4
|
Rodriguez-Otero A, Tisler S, Reinhardt LM, Jørgensen MB, Bouyssiere B, Christensen JH. Charge as a key physicochemical factor in adsorption of organic micropollutants from wastewater effluent by rice husk bio-silica. WATER RESEARCH 2024; 268:122748. [PMID: 39504697 DOI: 10.1016/j.watres.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants (WWTPs) often fail to fully remove organic micro-pollutants (OMPs), necessitating advanced treatment methods. This study examines the potential of an agricultural waste-derived adsorbent, rice husk (RH) - silica, for removing a complex mixture of 20 OMPs in MilliQ water and wastewater effluent. While RH-silica shows potential for OMP removal, its performance with multicomponent mixtures in real wastewater has yet to be investigated. Batch experiments demonstrated the efficacy of RH-silica in removing cationic, neutral, polar, and non-polar OMPs across various pH levels, with no adsorption of anionic OMPs. Column elution studies revealed that only positively charged compounds did not reach a breakthrough after 300 specific bed volumes (BVs), even when the filtration velocity was increased fivefold (3.8 m/h) and lower adsorbent-to-volume ratios (0.5 g/L) were employed. This indicates that electrostatic interactions via deprotonated silanol groups are the primary adsorption mechanism. RH-silica's ability to retain cationic pollutants regardless of their hydrophilicity degree highlights its potential as a novel adsorbent targeting positively charged persistent and mobile organic compounds (PMOCs). Moreover, the adsorption efficiency remained high in experiments with real wastewater effluent. Considering practical applications, a RH-silica column could be used to enhance removal of cationic polar compounds. This approach not only improves pollutant removal efficiency but also contributes to sustainability in WWTPs by using agricultural waste resources. Despite significant operational and end-of-life challenges for large-scale implementation, this study represents a crucial advancement in the investigation of RH-silica as an adsorbent.
Collapse
Affiliation(s)
- Alba Rodriguez-Otero
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark; Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lisa M Reinhardt
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Mathias B Jørgensen
- BIOFOS A/S, Refshalevej 250, Copenhagen 1432, Denmark; MSCi, Bøgesvinget 8, Skovlunde 2740, Denmark
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
5
|
Marszałek A, Puszczało E, Szymańska K, Sroka M, Kudlek E, Generowicz A. Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2917. [PMID: 38930286 PMCID: PMC11205702 DOI: 10.3390/ma17122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94-95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2.
Collapse
Affiliation(s)
- Anna Marszałek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Ewa Puszczało
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Marek Sroka
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Agnieszka Generowicz
- Department of Environmental Technologies, Cracow University of Technology, 31-155 Kraków, Poland
| |
Collapse
|
6
|
Anfar Z, Kuppan B, Scalabre A, Nag R, Pouget E, Nlate S, Magna G, Di Filippo I, Monti D, Naitana ML, Stefanelli M, Nikonovich T, Borovkov V, Aav R, Paolesse R, Oda R. Porphyrin-Based Hybrid Nanohelices: Cooperative Effect between Molecular and Supramolecular Chirality on Amplified Optical Activity. J Phys Chem B 2024; 128:1550-1556. [PMID: 38295761 DOI: 10.1021/acs.jpcb.3c07153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The development of chiral receptors for discriminating the configuration of the analyte of interest is increasingly urgent in view of monitoring pollution in water and waste liquids. Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica. This approach induces chirality in the receptors and Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica. This approach induces chirality in the receptors and makes the dye@nanohelix system disperse in a suspension of water without aggregation. We noted strong induction and amplification of chiroptical activity in both achiral and chiral (proline-based or hemicucurbituril-based) porphyrin derivatives with and without zinc ions once confined and organized in nanometer silica helices. The results clearly demonstrated that the organization-induced chirality amplification of porphyrins dominates the molecular chirality, and the amplification is more efficient for more flexible porphyrins (especially free-base and achiral).
Collapse
Affiliation(s)
- Zakaria Anfar
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Balamurugan Kuppan
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Antoine Scalabre
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Rahul Nag
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Emilie Pouget
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Sylvain Nlate
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Ilaria Di Filippo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Donato Monti
- Department of Chemistry, Sapienza, University of Rome, piazzale Aldo Moro 5, Rome 00185, Italy
| | - Mario L Naitana
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Tatsiana Nikonovich
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Reiko Oda
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France
- WPI-Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Yu C, Xie T, Liu H, Bai L. On-line extraction and determination of coumarins compounds from mouse plasma based on a homemade phenyl-hybrid monolithic adsorbent. J Pharm Biomed Anal 2024; 238:115851. [PMID: 37952450 DOI: 10.1016/j.jpba.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
A phenyl-hybrid monolithic adsorbent was prepared using an organic monomer of ethylene glycol phenyl ether acrylate and inorganic monomers of tetramethoxysilane and vinyltrimethoxysilane, via polycondensation and polymerization in a stainless-steel column, which shows porous structure and multiple functional groups, according to the measurements of scanning electron microscopy, nitrogen adsorption-desorption method and infrared spectroscopy. The resulting hybrid phenyl-based monolith was used as a solid-phase extraction column, combining with an analytical column in conjunction with high-performance liquid chromatography system for the on-line extraction and determination of coumarins (praeruptorin A and praeruptorin B) in Peucedani Radix from mouse plasma. The homemade hybrid monolithic solid-phase extraction column exhibits good removal ability for the sample matrices, as well as unique selectivity for the two praeruptorins. Methodology validation results indicate that the present method is applicable for the on-line extraction and quantitative analysis of praeruptorin A and praeruptorin B in Peucedani Radix from mouse plasma with a limit of quantitation 0.06 μg/mL and a linear range 0.06-5 μg/mL (r>0.999), thus indicating the present method is a promising and alternative method for the quantitative determination of similar target components with micro or trace concentration from complex extract solution and plasma.
Collapse
Affiliation(s)
- Changqing Yu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Tiantian Xie
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Grozdov D, Zinicovscaia I. Mesoporous Materials for Metal-Laden Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5864. [PMID: 37687556 PMCID: PMC10488830 DOI: 10.3390/ma16175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Rapid technological, industrial and agricultural development has resulted in the release of large volumes of pollutants, including metal ions, into the environment. Heavy metals have become of great concern due to their toxicity, persistence, and adverse effects caused to the environment and population. In this regard, municipal and industrial effluents should be thoroughly treated before being discharged into natural water or used for irrigation. The physical, chemical, and biological techniques applied for wastewater treatment adsorption have a special place in enabling effective pollutant removal. Currently, plenty of adsorbents of different origins are applied for the treatment of metal-containing aqueous solution and wastewater. The present review is focused on mesoporous materials. In particular, the recent achievements in mesoporous materials' synthesis and application in wastewater treatment are discussed. The mechanisms of metal adsorption onto mesoporous materials are highlighted and examples of their multiple uses for metal removal are presented. The information contained in the review can be used by researchers and environmental engineers involved in the development of new adsorbents and the improvement of wastewater treatment technologies.
Collapse
Affiliation(s)
- Dmitrii Grozdov
- Department of Nuclear Physics, Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia;
| | - Inga Zinicovscaia
- Department of Nuclear Physics, Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia;
- Department of Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 077125 Magurele, Romania
- Institute of Chemistry, Moldova State University, 3, Academiei Str, MD-2028 Chisinau, Moldova
| |
Collapse
|