1
|
Mobadersani P, Bharat NT, Pillai KM. Evaluation of a Volume-Averaged Species Transport Model with Micro-Macro Coupling for Breakthrough Curve Prediction. Molecules 2024; 29:4218. [PMID: 39275066 PMCID: PMC11397478 DOI: 10.3390/molecules29174218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
In porous water filters, the transport and entrapment of contaminants can be modeled as a classic mass transport problem, which employs the conventional convection-dispersion equation to predict the transport of species existing in trace amounts. Using the volume-averaging method (VAM), the upscaling has revealed two possible macroscopic equations for predicting contaminant concentrations in the filters. The first equation is the classical convection-dispersion equation, which incorporates a total dispersion tensor. The second equation involves an additional transport coefficient, identified as the adsorption-induced vector. In this study, the aforementioned equations were solved in 1D for column tests using 3D unit cells. The simulated breakthrough curves (BTCs), using the proposed micro-macro-coupling-based VAM model, are compared with the direct numerical simulation (DNS) results based on BCC-type unit cells arranged one-after-another in a daisy chain manner, as well as with three previously reported experimental works, in which the functionalized zeolite and zero-valent iron fillings were used as an adsorbent to remove phosphorous and arsenic from water, respectively. The disagreement of VAM BTC predictions with DNS and experimental results reveals the need for an alternative closure formulation in VAM. Detailed investigations reveal time constraint violations in all the three cases, suggesting this as the main cause of VAM's failure.
Collapse
Affiliation(s)
- Parham Mobadersani
- Laboratory for Flow and Transport Studies in Porous Media, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Naine Tarun Bharat
- Laboratory for Flow and Transport Studies in Porous Media, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Krishna M Pillai
- Laboratory for Flow and Transport Studies in Porous Media, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Tudor M, Borlan R, Maniu D, Astilean S, de la Chapelle ML, Focsan M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172792. [PMID: 38688379 DOI: 10.1016/j.scitotenv.2024.172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The urgent need for transition to renewable energy is underscored by a nearly 50 % increase in atmospheric carbon dioxide levels over the past century. The combustion of fossil fuels for energy production, transportation, and industrial activities are the main contributors to carbon dioxide emissions in the anthroposphere. Present approaches to reducing carbon emissions are proving inefficient, thereby accentuating the relevance of carbon dioxide photocatalysis in combating climate change - one of the critical issues of public concern. This process uses sunlight to convert carbon dioxide into valuable products, e.g., clean fuels, effectively reducing the carbon footprint and offering a sustainable use of carbon dioxide. In this context, plasmonic nanoparticles such as gold, silver, and copper play a pivotal role due to their proficiency in absorbing a wide range of light spectra, thereby effectively generating the necessary electrons and holes for the degradation of pollutants and surpassing the capabilities of traditional semiconductor catalysts. This review meticulously examines the latest advancements in plasmon-based carbon dioxide photocatalysis, scrutinizing the methodologies, characterizations, and experimental outcomes. The critical evaluation extends to exploring adjustments in the dimensional and morphological aspects of plasmonic nanoparticles, complemented by the incorporation of stabilizing agents, which may offer additional benefits. Furthermore, the review includes a thorough analysis of production rates and quantum yields based on different plasmonic materials and nanoparticle shapes and sizes, enriching the ongoing discourse on effective solutions in the field. Thus, our work emphasizes the pivotal role of plasmon-based photocatalysts in reducing carbon dioxide, investigating both the merits and challenges associated with integrating this emerging technology into climate change mitigation efforts.
Collapse
Affiliation(s)
- Madalina Tudor
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Marc Lamy de la Chapelle
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; IMMM - UMR 6283 CNRS, Le Mans Université, Olivier Messiaen Avenue, 72085 Le Mans, France.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
4
|
Ma Q, Zhang X, Li J, Zhang Y, Wang Q, Zeng L, Yang Y, Xie Y, Huang J. Transition Metal Catalysts for Atmospheric Heavy Metal Removal: A Review of Current Innovations and Advances. Molecules 2023; 28:7620. [PMID: 38005340 PMCID: PMC10673307 DOI: 10.3390/molecules28227620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Atmospheric heavy metal pollution presents a severe threat to public health and environmental stability. Transition metal catalysts have emerged as a potent solution for the selective capture and removal of these pollutants. This review provides a comprehensive summary of current advancements in the field, emphasizing the efficiency and specificity of nanostructured transition metals, including manganese, iron, cobalt, nickel, copper, and zinc. Looking forward, we delve into the prospective trajectory of catalyst development, underscoring the need for materials with enhanced stability, regenerability, and environmental compatibility. We project that advancements in computational materials science, nanotechnology, and green chemistry will be pivotal in discovering innovative catalysts that are economically and environmentally sustainable. The integration of smart technologies for real-time monitoring and adaptive control is anticipated to revolutionize heavy metal remediation, ensuring efficient and responsive pollution abatement strategies in the face of evolving industrial scenarios and regulatory landscapes.
Collapse
Affiliation(s)
- Qiang Ma
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Xianglong Zhang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Jie Li
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China;
| | - Qingyuan Wang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Li Zeng
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Yige Yang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610091, China
| | - Yonghong Xie
- Sichuan Province Environmental Monitoring Station, Chengdu 610091, China
| | - Jin Huang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| |
Collapse
|
5
|
Yang JY, Tang DX, Liu DL, Liu K, Yang XJ, Li YS, Liu Y. Excellent Dark/Light Dual-Mode Photoresponsive Activities Based on g-C 3N 4/CMCh/PVA Nanocomposite Hydrogel Using Electron Beam Radiation Method. Molecules 2023; 28:7544. [PMID: 38005263 PMCID: PMC10674341 DOI: 10.3390/molecules28227544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Photocatalytic technology for inactivating bacteria in water has received much attention. In this study, we reported a dark-light dual-mode sterilized g-C3N4/chitosan/poly (vinyl alcohol) hydrogel (g-CP) prepared through freeze-thaw cycling and an in situ electron-beam radiation method. The structures and morphologies of g-CP were confirmed using Fourier infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), solid ultraviolet diffuse reflectance spectroscopy (UV-vis DRS), and Brunauer-Emmett-Teller (BET). Photocatalytic degradation experiments demonstrated that 1 wt% g-CP degraded rhodamine B (RhB) up to 65.92% in 60 min. At the same time, g-CP had good antimicrobial abilities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 4 h. The shapes of g-CP were adjustable (such as bar, cylinder, and cube) and had good mechanical properties and biocompatibility. The tensile and compressive modulus of 2 wt% g-CP were 0.093 MPa and 1.61 MPa, respectively. The Cell Counting Kit-8 (CCK-8) test and Hoechst33342/PI double staining were used to prove that g-CP had good biocompatibility. It is expected to be applied to environmental sewage treatment and wound dressing in the future.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dong-Xu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
| | - Dong-Liang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
| | - Xiao-Jie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
| | - Yue-Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.-Y.Y.); (D.-X.T.); (D.-L.L.); (K.L.); (X.-J.Y.)
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China;
| |
Collapse
|