1
|
Matsuki H, Mandai S, Shiwaku H, Koide T, Takahashi N, Yanagi T, Inaba S, Ida S, Fujiki T, Mori Y, Ando F, Mori T, Susa K, Iimori S, Sohara E, Takahashi H, Uchida S. Chronic kidney disease causes blood-brain barrier breakdown via urea-activated matrix metalloproteinase-2 and insolubility of tau protein. Aging (Albany NY) 2023; 15:10972-10995. [PMID: 37889501 PMCID: PMC10637825 DOI: 10.18632/aging.205164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Chronic kidney disease (CKD) causes cognitive impairment and contributes to the overall global burden of dementia. However, mechanisms through which the kidneys and brain communicate are not fully understood. We established a CKD mouse model through adenine-induced tubulointerstitial fibrosis. Novel object recognition tests indicated that CKD decreased recognition memory. Sarkosyl-insoluble-proteomic analyses of the CKD mouse hippocampus revealed an accumulation of insoluble MAPT (microtubule-associated protein tau) and RNA-binding proteins such as small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70). Additionally, there was an accumulation of Immunoglobulin G (IgG), indicating blood-brain barrier (BBB) breakdown. We identified that expressions of essential tight-junction protein claudin-5 and adherens-junction protein platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) were decreased in the brain endothelial cells of CKD mice. We determined urea as a major uremic solute that dose dependently decreased both claudin-5 and PECAM-1 expression in the mouse brain endothelial cell line bEnd.3 cells. Gelatin zymography indicated that the serum of CKD mice activated matrix metalloproteinase-2 (MMP2), while marimastat ameliorated the reduction of claudin-5 expression by urea in bEnd.3 cells. This study established a brain proteomic signature of CKD indicating BBB breakdown and insolubility of tau protein, which are pathologically linked to Alzheimer's disease. Urea-mediated activation of MMP2 was partly responsible for BBB breakdown in CKD.
Collapse
Affiliation(s)
- Hisazumi Matsuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Takaaki Koide
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Naohiro Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Tomoki Yanagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shunsuke Inaba
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Saaya Ida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Soichiro Iimori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Bellut M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK. Delayed NLRP3 inflammasome inhibition ameliorates subacute stroke progression in mice. J Neuroinflammation 2023; 20:4. [PMID: 36600259 DOI: 10.1186/s12974-022-02674-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ischemic stroke immediately evokes a strong neuro-inflammatory response within the vascular compartment, which contributes to primary infarct development under vessel occlusion as well as further infarct growth despite recanalization, referred to as ischemia/reperfusion injury. Later, in the subacute phase of stroke (beyond day 1 after recanalization), further inflammatory processes within the brain parenchyma follow. Whether this second wave of parenchymal inflammation contributes to an additional/secondary increase in infarct volumes and bears the potential to be pharmacologically targeted remains elusive. We addressed the role of the NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome in the subacute phase of ischemic stroke. METHODS Focal cerebral ischemia was induced in C57Bl/6 mice by a 30-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with the NLRP3 inhibitor MCC950 therapeutically 24 h after or prophylactically before tMCAO. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 7 after tMCAO. RESULTS Infarct sizes on day 7 after tMCAO decreased about 35% after delayed and about 60% after prophylactic NLRP3 inhibition compared to vehicle. Functionally, pharmacological inhibition of NLRP3 mitigated the local inflammatory response in the ischemic brain as indicated by reduction of infiltrating immune cells and reactive astrogliosis. CONCLUSIONS Our results demonstrate that the NLRP3 inflammasome continues to drive neuroinflammation within the subacute stroke phase. NLRP3 inflammasome inhibition leads to a better long-term outcome-even when administered with a delay of 1 day after stroke induction, indicating ongoing inflammation-driven infarct progression. These findings may pave the way for eagerly awaited delayed treatment options in ischemic stroke.
Collapse
Affiliation(s)
- Maximilian Bellut
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Michael Bieber
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Peter Kraft
- Department of Neurology, Klinikum Main-Spessart Lohr, Lohr, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,iFIT-Clusters of Excellence EXC 2180 "Image-Guided and Functionally Instructed Tumor Therapies" and EXC 2124 "Controlling Microbes to Fight Infection", University of Tübingen, Tübingen, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Michael K Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis 2021; 13:20. [PMID: 34930895 PMCID: PMC8688414 DOI: 10.1038/s41419-021-04379-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022]
Abstract
In ischemic stroke (IS) impairment of the blood-brain barrier (BBB) has an important role in the secondary deterioration of neurological function. BBB disruption is associated with ischemia-induced inflammation, brain edema formation, and hemorrhagic infarct transformation, but the underlying mechanisms are incompletely understood. Dysfunction of endothelial cells (EC) may play a central role in this process. Although neuronal NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome upregulation is an established trigger of inflammation in IS, the contribution of its expression in EC is unclear. We here used brain EC, exposed them to oxygen and glucose deprivation (OGD) in vitro, and analyzed their survival depending on inflammasome inhibition with the NLRP3-specific drug MCC950. During OGD, EC death could significantly be reduced when targeting NLRP3, concomitant with diminished endothelial NLRP3 expression. Furthermore, MCC950 led to reduced levels of Caspase 1 (p20) and activated Gasdermin D as markers for pyroptosis. Moreover, inflammasome inhibition reduced the secretion of pro-inflammatory chemokines, cytokines, and matrix metalloproteinase-9 (MMP9) in EC. In a translational approach, IS was induced in C57Bl/6 mice by 60 mins transient middle cerebral artery occlusion and 23 hours of reperfusion. Stroke volume, functional outcome, the BBB integrity, and-in good agreement with the in vitro results-MMP9 secretion as well as EC survival improved significantly in MCC950-treated mice. In conclusion, our results establish the NLRP3 inflammasome as a critical pathogenic effector of stroke-induced BBB disruption by activating inflammatory signaling cascades and pyroptosis in brain EC.
Collapse
Affiliation(s)
- Maximilian Bellut
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Lena Papp
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Michael Bieber
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
- Department of Neurology, Klinikum Main-Spessart, Grafen-von-Rieneck-Str. 5, 97816, Lohr, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Michael K Schuhmann
- Department of Neurology, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| |
Collapse
|