1
|
Deng Y, Che Q, Li Y, Luo J, Gao X, He Y, Liu Y, Liu T, Zhao X, Hu X, Zhao W. Non-radical activation of persulfate with Bi 2O 3/BiO 1.3I 0.4 for efficient degradation of propranolol under visible light. J Environ Sci (China) 2024; 142:57-68. [PMID: 38527896 DOI: 10.1016/j.jes.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 03/27/2024]
Abstract
Non-radical activation of persulfate (PS) by photocatalysts is an effective approach for removing organic pollutants from aqueous environments. In this study, a novel Bi2O3/BiO1.3I0.4 heterojunction was synthesized using a facile solvothermal approach and used for the first time for non-radical activation of PS to degrade propranolol (PRO) in the presence of visible light. The findings found that the degradation rate of PRO in the Bi2O3/BiO1.3I0.4/PS system was significantly increased from 19% to more than 90% within 90 min compared to the Bi2O3/BiO1.3I0.4 system. This indicated that the composite system exerted an excellent synergistic effect between the photocatalyst and the persulfate-based oxygenation. Quenching tests and electron paramagnetic resonance demonstrated that the non-radical pathway with singlet oxygen as the active species played a major role in the photocatalytic process. The existence of photo-generated holes during the reaction could also be directly involved in the oxidation of pollutants. Meanwhile, a possible PRO degradation pathway was also proposed. Furthermore, the impacts of pH, humic acid and common anions on the PRO degradation by the Bi2O3/BiO1.3I0.4/PS were explored, and the system's stability and reusability were also studied. This study exhibits a highly productive catalyst for PS activation via a non-radical pathway and provides a new idea for the degradation of PRO.
Collapse
Affiliation(s)
- Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Qianqian Che
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiating Luo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiling Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tong Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaobin Hu
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Wei Zhao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
2
|
Nie W, Che Q, Chen D, Cao H, Deng Y. Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2793. [PMID: 38930162 PMCID: PMC11204899 DOI: 10.3390/ma17122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L-1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| | - Qianqian Che
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Danni Chen
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Hongyu Cao
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Yuehua Deng
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| |
Collapse
|
3
|
Liu L, Liu YX, Zhong H, Li XR, Jun YL, Wang QL, Ding LS, Cheng ZP, Qian HY. Folic acid conjugated palygorskite/Au hybrid microgels: Temperature, pH and light triple-responsive and its application in drug delivery. Colloids Surf B Biointerfaces 2023; 229:113432. [PMID: 37422992 DOI: 10.1016/j.colsurfb.2023.113432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Herein, folic acid conjugated poly (NIPAM-co-functional palygorskite-Au-co-acrylic acid) (FA-PNFA) hybrid microgels were fabricated by emulsion polymerization. The introduction of acrylic acid can increase the low critical solution temperature (LCST) of FA-PNFA from 36 °C at pH 5.5-42 °C at pH 7.4. Doxorubicin hydrochloride (DOX) was chosen as the load drug, the results show that the DOX release behavior is driven by temperature, pH and light. Cumulative drug release rate can reach 74 % at 37 °C and pH 5.5 while only 20 % at 37 °C and pH 7.4, which effectively avoided the early leakage of the drug. In addition, by exposing FA-PNFA hybrid microgels to laser irradiation, the cumulative release rate was increased by 5 % compared to the release rate under dark conditions. Functional palygorskite-Au as physical crosslinkers not only improves the drug loading content of microgels but also promotes the release of DOX through light drive. Methyl thiazolyl tetrazolium bromide (MTT) assay demonstrated that the FA-PNFA are nontoxic up to 200 μg mL-1 towards 4T1 breast cancer cell. Meanwhile, DOX-loaded FA-PNFA show more significant cytotoxicity than the free DOX. Confocal laser scanning microscope (CLSM) revealed that the DOX-loaded FA-PNFA could be efficiently taken by 4T1 breast cancer cells. FA-PNFA hybrid microgels not only improve the LCST of PNIPAM, but also endow the microgels with photostimulation responsiveness, which can release drugs in response to the triple stimulation response of temperature, pH and light, thus effectively reducing the activity of cancer cells, making them more promising for wider medical applications.
Collapse
Affiliation(s)
- Lei Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China
| | - Yi-Xin Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China
| | - Hui Zhong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China.
| | - Xiao-Rong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China.
| | - Ya-Li Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Qi-Long Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Lian-Shu Ding
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Zhi-Peng Cheng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China
| | - Hai-Yan Qian
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China.
| |
Collapse
|
4
|
do Nascimento BF, de Araújo CMB, Del Carmen Pinto Osorio D, Silva LFO, Dotto GL, Cavalcanti JVFL, da Motta Sobrinho MA. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85344-85358. [PMID: 37382818 DOI: 10.1007/s11356-023-28242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Collapse
Affiliation(s)
- Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, s/n, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil
| |
Collapse
|
5
|
Fan X, Wang H, Liu X, Liu J, Zhao N, Zhong C, Hu W, Lu J. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209290. [PMID: 36455877 DOI: 10.1002/adma.202209290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Increasing pursuit of next-generation wearable electronics has put forward the demand of reliable energy devices with high flexibility, durability, and enhanced electrochemical performances. Flexible aqueous zinc-air batteries (FAZABs) have attracted great interests owing to the high energy density, safety, and environmental benignity, for which quasi-solid-state gel polymer electrolytes (QSGPEs) are state-of-the-art electrolytes with high ionic conductivity, flexibility, and resistance to leakage problems of traditional liquid electrolytes. Compared to commonly used PVA-KOH electrolyte with poor electrolyte retention capability and cycling stability, a new type of sulfonate functionalized nanocomposite QSGPE is applied in FAZABs with high ionic conductivity, strong alkaline tolerance, and high zinc anode stability. Notably, the existence of (1) strong anionic sulfonate groups of QSGPEs, contributing to the exposure of preferred Zn (002) plane that is more resistant to zinc dendrite formation, and (2) nano-attapulgite electrolyte additives, beneficial for the enhancement of ionic conductivity, electrolyte uptake, and retention capability, endows a ultralong cycling life of 450 h for the fabricated FAZAB. Furthermore, flexible energy belts and knittable energy wires fabricated with a series/parallel unit of several FAZABs can be used to power various wearable electronics.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Naiqin Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
6
|
Regenerable Kiwi Peels as an Adsorbent to Remove and Reuse the Emerging Pollutant Propranolol from Water. Processes (Basel) 2022. [DOI: 10.3390/pr10071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work aims to characterize the adsorption process of propranolol HCl, an emerging pollutant and a widely used β-blocker, onto kiwi peels, an agricultural waste. The use of UV-vis spectroscopy was considered to obtain information about the pollutant removal working in the in-batch mode. In a relatively short time, the adsorption process could remove the pollutant from water. A kiwi peel maximum adsorption capacity of 2 mg/g was obtained. With the perspective of scaling up the process, preliminary in-flux measurements were also performed. The investigation of the whole in-batch adsorption process was conducted by studying the effect of ionic strength (adopting salt concentrations from 0 to 0.4 M), pH values (from 2 to 12), adsorbent/pollutant amounts (from 25 to 100 mg and from 7.5 to 15 mg/L, respectively), and temperature values (from 289 to 305 K). The thermodynamics, the adsorption isotherms, and the kinetics of the adsorption process were also carefully investigated. The Langmuir model fitted the experimental data well, with an R2 of 0.9912, restituting KL: 1 L/mg and Q0: 1.8 mg/g. The temperature increase enhanced the pollutant removal due to the endothermic adsorption characteristics. Accordingly, a ΔH°298K of +70 KJ/mol was obtained. The pseudo-first-order kinetic model described the process. Due to the results observed during the study of the effects of pH and ionic strength, the prominent presence of electrostatic interactions, working in synergy with hydrophobic forces and H-bonds between the pollutant and kiwi peel surfaces, was successfully demonstrated. In particular, FTIR-ATR measurements confirmed the latter findings. Finally, desorption experiments for recycling 100% of propranolol for each cycle were performed using 0.1 M MgCl2. Ten cycles of adsorption/desorption were obtained and indicated that the percentage of propranolol removal was not affected during each run, increasing the maximum adsorption from 2 to 20 mg/g.
Collapse
|
7
|
Wang Y, Cui K, Fang B, Wang F. Cost-Effective Fabrication of Modified Palygorskite-Reinforced Rigid Polyurethane Foam Nanocomposites. NANOMATERIALS 2022; 12:nano12040609. [PMID: 35214940 PMCID: PMC8876664 DOI: 10.3390/nano12040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023]
Abstract
Integration of nanoclay minerals into rigid polyurethane foams (RPUFs) is a cost-effective solution to enhance foam’s performance via environmental protection technology. In this work, palygorskite/RPUFs nanocomposites (Pal/RPUFNs) with excellent mechanical properties and thermal stability were prepared via a one-step method, using 4,4’-diphenylmethane diisocyanate and polyether polyol as the starting materials, coupled with Pal modified by silane coupling agent KH570. The effects of the modified Pal on the mechanics, morphology, and thermal properties of the nanocomposites were studied systematically. When the content of the modified Pal was 8 wt% of polyether polyol, the elastic modulus and compressive strength of the Pal/RPUFNs were increased by ca. 131% and 97%, respectively. The scanning electron microscopy images indicated that the addition of the modified Pal significantly decreased the cell diameter of the Pal/RPUFNs. The results of thermogravimetric and derivative thermogravimetry analyses revealed that the addition of the modified Pal increased the thermal weight loss central temperature of the Pal/RPUFNs, showing better thermal stability in comparison with the pure RPUFs. A self-made evaluation device was used to estimate the thermal insulation ability of the Pal/RPUFNs. It was found that the small cell size and uniform cellular structure were keys to improving the thermal insulation performance of the RPUFs. The prepared Pal/RPUFNs are expected to have great potential in the field of building insulation.
Collapse
Affiliation(s)
- Yulei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
| | - Kaibin Cui
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (B.F.); (F.W.)
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
- Correspondence: (B.F.); (F.W.)
| |
Collapse
|
8
|
Sambathkumar C, Krishna Kumar M, Nallamuthu N, Rajesh K, Devendran P. Investigations on electrochemical performances of Co(OH)2, Fe2O3 and Mn3O4 nanoparticles covered carbon micro spheres for supercapacitor application. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Teng Y, Jiang Z, Yu A, Yu H, Huang Z, Zou L. Optimization of preparation parameters for environmentally friendly attapulgite functionalized by chitosan and its adsorption properties for Cd 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44064-44078. [PMID: 33843002 DOI: 10.1007/s11356-021-13788-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/30/2021] [Indexed: 05/28/2023]
Abstract
This work focused on using attapulgite and chitosan as raw materials to improve the adsorption capacity of Cd2+ from the aqueous phase by optimizing the preparation experimental parameters. The modification parameters (attapulgite-chitosan mass ratio, calcination temperature, and time) were specifically studied and optimized. The results indicated that the mass ratio of attapulgite to chitosan was 1:4, the calcination temperature was 300 °C, and the calcination time was 1 h. Both raw and functionalized attapulgite samples were characterized by nitrogen adsorption-desorption isotherms at 77 K, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and zeta potential analysis. A series of adsorption experiments showed that the pseudo-second-order kinetic model and Langmuir adsorption isotherm better corresponded with the adsorption characteristics of the newly prepared adsorbent, and the maximum adsorption amount of Cd2+ was 109.30 mg/g. Moreover, the effects of the pH value and coexisting cations on the Cd2+ adsorption in aqueous solution were investigated. Adsorption mechanism of Cd2+ on adsorbent might attribute to complexation, ion exchange reaction, and self-polarization.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Ziyang Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|