1
|
Aldayel MF. Biofabrication of Silver Nanoparticles Using Pergularia tomentosa Extract and Evaluation of Their Antibacterial, Antioxidant, and Cytotoxic Properties. Life (Basel) 2024; 14:1639. [PMID: 39768346 PMCID: PMC11677515 DOI: 10.3390/life14121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The biosynthesis of silver nanoparticles using plant extracts is a promising field of research because of the useful biomedical applications of metal nanoparticles. In this study, the antibacterial and antioxidant properties of silver nanoparticles biosynthesized with the aqueous leaf extract of Pergularia tomentosa were defined using a simple, eco-friendly, consistent, and cost-effective method. The leaf extract of Pergularia tomentosa (PT) served as a capping and reducing agent to biosynthesize silver nanoparticles. The effects of several parameters, such as the concentration of AgNO3, ratio of AgNO3 to extract, pH, and incubation time, were examined to optimize the synthesis process. In total, 5 mM of AgNO3, a 1:0.06 ratio of AgNO3 to Pergularia tomentosa extract, pH 9.0, and reaction mixture incubation for 24 h were found to be the ideal parameters for biosynthesizing silver nanoparticles (AgNPs). UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to characterize the biosynthesized Pergularia tomentosa silver nanoparticles (PT-AgNPs). Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (Salmonella enteritides and Escherichia coli) were used to test the PT-AgNPs' antibacterial activity. The presence of different functional groups was determined using FTIR. The AgNPs were hexagon shaped. The nanoparticles were more toxic against S. enteritides than both B. cereus and E. coli. In antioxidant analyses, the AgNPs were found to be as strong at free radical scavenging as gallic acid (standard), with IC50 values of 0.69 and 22.30 μg/mL for DPPH and ABTS radicals, respectively. Interestingly, the PT-AgNPs displayed increased anti-inflammatory activity compared with the P. tomentosa leaf extract (79% vs. 59% at 500 µg/mL). The PT-AgNPs did not display any cytotoxicity against the MCF-7 cell line at the MIC. In conclusion, silver nanoparticles fortified with Pergularia tomentosa extract exhibited potential as effective antibacterial, anti-inflammatory, and antioxidant agents, suggesting their viability as alternatives to commercially available products.
Collapse
Affiliation(s)
- Munirah F Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
3
|
Zahra D, Shokat Z, Sufyan M, Chaudhary Z, Ashfaq UA. Exploring the potential of chitosan polyherbal hydrogel loaded with AgNPs to enhance wound healing A triangular study. Int J Biol Macromol 2024; 281:135896. [PMID: 39374716 DOI: 10.1016/j.ijbiomac.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Hydrogel wound dressings provide a moist environment, which promotes the formation of granulation tissue and epithelium in the wound area, accelerating the wound healing process. There have been numerous approaches to skin wound management and treatment, but the limitations of current methods highlight the need for more effective alternatives. A Chitosan polyherbal hydrogel integrated with AgNPs was synthesized to assess its wound-healing potential both in vitro and in vivo. The AgNPs were synthesized using Calotropis procera leaf extract and characterized via X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR). In swelling kinetic analysis, the hydrogel's weight reached its maximum at 8 h of incubation and began to decrease from 12 h up to 72 h (49 % ± 6.04). The hydrogel formulation demonstrated strong antimicrobial potential against E. coli and S. aureus with an inhibition zone of 18 mm and 25 mm, respectively. Furthermore, in mice studies, the formulation exhibited significant wound size reduction within 12 days, supported by histopathology analysis revealing higher angiogenic potential compared to commercial hydrogels. The concentrations of IL-6 and TNF-α in CS-polyherbal/AgNPs hydrogel were 500 pg/ml and 125 pg/ml, respectively. Additionally, a network pharmacology approach identified 11 chemical constituents in Aloe vera, Azadirachta indica, and Alternanthera brasiliana extracts, along with 326 potential targets, suggesting the superior wound healing properties of this formulation compared to commercially available hydrogels.
Collapse
Affiliation(s)
- Duaa Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chaudhary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
4
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Kemala P, Khairan K, Ramli M, Helwani Z, Rusyana A, Lubis VF, Ahmad K, Idroes GM, Noviandy TR, Idroes R. Optimizing antimicrobial synergy: Green synthesis of silver nanoparticles from Calotropis gigantea leaves enhanced by patchouli oil. NARRA J 2024; 4:e800. [PMID: 39280303 PMCID: PMC11392007 DOI: 10.52225/narra.v4i2.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024]
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have gained attention for their potential applications in biomedicine. Calotropis gigantea has been utilized to synthesize AgNPs, called AgNPs-LCg, and exhibit antibacterial activities against both Gram-positive and Gram-negative bacteria as well as antifungal. However, further enhancement of their antimicrobial properties is needed. The aim of this study was to synthesize AgNPs-LCg and to enhance their antimicrobial and antifungal activities through a hybrid green synthesis reaction using patchouli oil (PO), as well as to characterize the synthesized AgNPs-LCg. Optimization was conducted using the response surface method (RSM) with a central composite design (CCD). AgNPs-LCg were synthesized under optimal conditions and hybridized with different forms of PO-crude, distillation wastewater (hydrolate), and heavy and light fractions-resulting in PO-AgNPs-LCg, PH-AgNPs-LCg, LP-AgNPs-LCg, and HP-AgNPs-LCg, respectively. The samples were then tested for their antibacterial (both Gram-positive and Gram-negative bacteria) and antifungal activities. Our data indicated that all samples, including those with distillation wastewater, had enhanced antimicrobial activity. HP-AgNPs-LCg, however, had the highest efficacy; therefore, only HP-AgNPs-LCg proceeded to the characterization stage for comparison with AgNPs-LCg. UV-Vis spectrophotometry indicated surface plasmon resonance (SPR) peaks at 400 nm for AgNPs-LCg and 360 nm for HP-AgNPs-LCg. The Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of O-H, N-H, and C-H groups in C. gigantea extract and AgNP samples. The smallest AgNPs-LCg were 56 nm, indicating successful RSM optimization. Scanning electron microscopy (SEM) analysis revealed spherical AgNPs-LCg and primarily cubic HP-AgNPs-LCg, with energy-dispersive X-ray spectroscopy (EDX) confirming silver's predominance. This study demonstrated that PO in any form significantly enhances the antimicrobial properties of AgNPs-LCg. The findings pave the way for the exploration of enhanced and environmentally sustainable antimicrobial agents, capitalizing on the natural resources found in Aceh Province, Indonesia.
Collapse
Affiliation(s)
- Pati Kemala
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairan Khairan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Zuchra Helwani
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, Indonesia
| | - Asep Rusyana
- Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Vanizra F Lubis
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairunnas Ahmad
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Ghazi M Idroes
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Occupational Health and Safety, Faculty of Health Science, Universitas Abulyatama, Aceh Besar, Indonesia
| | - Teuku R Noviandy
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
6
|
Bharti S, Singh B, Kumar S, Kumar R, Kumar J. Synthesis of bio-stabilized silver nanoparticles using Roccella montagnei, their anticandidal capacities & potential to inhibit the virulence factors in fluconazole-resistant Candida albicans. World J Microbiol Biotechnol 2024; 40:158. [PMID: 38592601 DOI: 10.1007/s11274-024-03928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024]
Abstract
Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.
Collapse
Affiliation(s)
- Shweta Bharti
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Lucknow, India
| | - Balwant Singh
- Department of Biotechnology, Bundelkhand University, Jhansi, India
| | - Sanket Kumar
- Department of Botany, School of Sciences, IFTM University, Moradabad, 244102, India
| | - Rajesh Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Lucknow, India
| | - Jatinder Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu & Kashmir, India.
| |
Collapse
|
7
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, Pi X, Peng X, Peng X, Pi J, Li N. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133639. [PMID: 38309169 DOI: 10.1016/j.jhazmat.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418099, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
8
|
Jiang D, Yang G, Huang LJ, Chen K, Tang Y, Pi X, Yang R, Peng X, Cui C, Li N. Unveiling the toxic effects, physiological responses and molecular mechanisms of tobacco (Nicotiana tabacum) in exposure to organic ultraviolet filters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133060. [PMID: 38016314 DOI: 10.1016/j.jhazmat.2023.133060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Exposure to organic ultraviolet (UV) filters has raised concerns due to their potential adverse effects on environments. However, their toxic mechanisms on plants remain elusive. In this study, using integrative physiological and transcriptomic approaches we investigated the physiological and molecular responses to three representative UV filters, namely oxybenzone (OBZ), avobenzone (AVB), and octinoxate (OMC), in an agricultural model plant tobacco. The exposure to UV filters disrupts the functionality of photosystem reaction centers and the light-harvesting apparatus. Concurrently, UV filters exert a suppressive effect on the expression of genes encoding Rubisco and Calvin-Benson cycle enzymes, resulting in a decreased efficiency of the Calvin-Benson cycle and consequently hampering the process of photosynthesis. Exposure to UV filters leads to significant generation of reactive oxygen species within tobacco leaves and downregulation of oxidoreductase activities. Moreover, UV filters promote abscisic acid (ABA) accumulation by inducing the expression of ABA biosynthesis genes whereas repress indole-3-acetic acid (IAA) biosynthesis gene expression, which induce leaf yellowing and slow plant growth. In summary, the organic UV filters exert toxic effects on tobacco growth by inhibiting chlorophyll synthesis, photosynthesis, and the Calvin-Benson cycle, while generating excessive reactive oxygen species. This study sheds light on the toxic and tolerance mechanisms of UV filters in agricultural crops.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Kebin Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Yangcan Tang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China.
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| |
Collapse
|
9
|
Nawab R, Ali M, Haroon U, Kamal A, Akbar M, Anwar F, Ahmed J, Chaudhary HJ, Iqbal A, Hashem M, Alamri S, ALHaithloul HAS, Munis MFH. Calotropis procera (L.) mediated synthesis of AgNPs and their application to control leaf spot of Hibiscus rosa-sinensis (L.). BRAZ J BIOL 2024; 84:e261123. [DOI: 10.1590/1519-6984.261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Nature is gifted with a wide range of ornamental plants, which beautify and clean the nature. Due to its great aesthetic value, there is a need to protect these plants from a variety of biotic and abiotic stresses. Hibiscus rosa-sinensis (L.) is an ornamental plant and it is commonly known as China rose or shoeblack plant. It is affected by several fungal and bacterial pathogens. Current study was designed to isolate leaf spot pathogen of H. rosa-sinensis and its control using silver nanoparticles (AgNPs). Based on molecular and morphological features, the isolated leaf spot pathogen was identified as Aspergillus niger. AgNPs were synthesized in the leaf extract of Calotropis procera and characterized. UV-vis spectral analysis displayed discrete plasmon resonance bands on the surface of synthesized AgNPs, depicting the presence of aromatic amino acids. Fourier transform infrared spectroscopy (FTIR) described the presence of C-O, NH, C-H, and O-H functional groups, which act as stabilizing and reducing molecules. X-ray diffraction (XRD) revealed the average size (~32.43 nm) of AgNPs and scanning electron microscopy (SEM) depicted their spherical nature. In this study, in vitro and in vivo antifungal activity of AgNPs was investigated. In vitro antifungal activity analysis revealed the highest growth inhibition of mycelia (87%) at 1.0 mg/ml concentration of AgNPs. The same concentration of AgNPs tremendously inhibited the spread of disease on infected leaves of H. rosa-sinensis. These results demonstrated significant disease control ability of AgNPs and suggested their use on different ornamental plants.
Collapse
Affiliation(s)
- R. Nawab
- Quaid-i-Azam University, Pakistan
| | - M. Ali
- Quaid-i-Azam University, Pakistan
| | | | - A. Kamal
- Quaid-i-Azam University, Pakistan
| | - M. Akbar
- Quaid-i-Azam University, Pakistan
| | - F. Anwar
- Quaid-i-Azam University, Pakistan
| | - J. Ahmed
- Quaid-i-Azam University, Pakistan
| | | | - A. Iqbal
- Quaid-i-Azam University, Pakistan
| | - M. Hashem
- King Khalid University, Saudi Arabia; Assiut University, Egypt
| | - S. Alamri
- King Khalid University, Saudi Arabia
| | | | | |
Collapse
|
10
|
Abdallah BM, Rajendran P, Ali EM. Potential Treatment of Dermatophyte Trichophyton rubrum in Rat Model Using Topical Green Biosynthesized Silver Nanoparticles with Achillea santolina Extract. Molecules 2023; 28:molecules28041536. [PMID: 36838531 PMCID: PMC9965404 DOI: 10.3390/molecules28041536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Trichophyton rubrum is the most common dermatophyte, and can cause cutaneous infections in humans and animals (dermatophytosis). In this study, we investigated the anti-dermatophytic potential of green synthesized silver nanoparticles using Achillea santolina extract (AS-AgNPs) in an in vitro and in vivo rat model of dermal T. rubrum dermatophytosis (TRD). The green synthesis of AS-AgNPs was performed using A. santolina extract and characterized by UV-VIS spectroscopy, zeta potential, imaging (transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive X-ray analysis (EDX). The antifungal activity of AS-AgNPs was determined by the broth microdilution method, conidial germination, and hyphal growth inhibition. TEM and SEM were used to study the mode of the antifungal action of AS-AgNPs. AS-AgNPs inhibited the growth of T. rubrum with an MIC of 128 μg/mL, and suppressed the conidial germination and hyphal growth by 55.3% 84.6%, respectively. AS-AgNPs caused modified mycelial structures, increased cell membrane permeability, and cell wall damage. AS-AgNPs significantly increase the permeability of the fungal membrane, as revealed by reducing ergosterol biosynthesis. An increase in the intracellular ROS and the induction of apoptosis were also observed during AS-AgNP treatment. In addition, AS-AgNPs reduced the cell wall integrity, as shown by the reduction in the β-(1,3)-d-glucan synthase and chitin synthase activities. AS-AgNPs showed very low toxicity on primary human dermal fibroblasts (HDF) at the MIC. The topical treatment of the infected skin in the TRD rat model with AS-AgNPs showed a significant reduction in the fugal burden after 7 days and a complete clearance of fungal conidia, with a high recovery of epidermal and dermal structures after 14 days, compared to control rats. Interestingly, AS-AgNPs significantly attenuated the infiltrated inflammatory cells, in association with reducing the tissue proinflammatory cytokines including TNF-α, IL-1, IL-6, MOP and IL-17. In conclusion, our data prove AS-AgNPs to be a novel green topical therapy for dermatophytosis caused by T. rubrum.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(013)-589-9430
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
11
|
Malathi S, Manikandan D, Nishanthi R, Jagan EG, Riyaz SUM, Palani P, Simal‐Gandara J. Silver Nanoparticles, Synthesized using
Hyptis suaveolens
(L) Poit and their Antifungal Activity against
Candida
spp. ChemistrySelect 2022. [DOI: 10.1002/slct.202203050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Selvaraj Malathi
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai India
- Department of Biotechnology Sri Sankara Arts and Science College (Autonomous) Enathur Kanchipuram
| | - Dhayalan Manikandan
- Small Molecules and Drug Discovery group, Chengdu Anticancer Biosciecne, Tianfu International Biotown Chengdu 610000 China
| | - Ramasami Nishanthi
- Department of Biotechnology College of Science and Humanities, SRMIST Kattankulathur 603 203 Tamilnadu India
| | - Enthai Ganeshan Jagan
- Department of Biotechnology Sri Sankara Arts and Science College (Autonomous) Enathur Kanchipuram
- Department of Molecular Microbiology School of Biotechnology Madurai Kamaraj University Madurai -625021 India
| | - Savaas Umar Mohammed Riyaz
- PG & Research Department of Biotechnology Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
| | - Perumal Palani
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai India
| | - Jesus Simal‐Gandara
- Universidade de Vigo Nutrition and Bromatology Group Analytical Chemistry and Food Science Department Faculty of Science E-32004 Ourense Spain
| |
Collapse
|
12
|
Ryu S, Nam SH, Baek JS. Green Synthesis of Silver Nanoparticles (AgNPs) of Angelica Gigas Fabricated by Hot-Melt Extrusion Technology for Enhanced Antifungal Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7231. [PMID: 36295297 PMCID: PMC9606926 DOI: 10.3390/ma15207231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Green synthesis for synthesizing silver nanoparticles (AgNPs) has been suggested as an environmentally friendly alternative to conventional physical/chemical methods. In this study, we report the green synthesis of AgNPs using a hot-melt extrusion-processed Angelica gigas Nakai (AGN) (HME-AGN) extract as a reducing agent to increase the water solubility of the active ingredient compared to the existing AGN. The mixture of the AGN extract and AgNO3 at about 420 nm could not confirm the formation of AgNPs. The synthesis of AgNPs was found to be most advantageous at 60 °C when the mixing ratio of the HME-AGN extract was 9:1 (AgNO3-extract, v/v) using 3 mM AgNO3. The physicochemical properties of the optimized AgNPs were characterized by UV-Vis spectrophotometer, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffractometer (XRD). DLS showed the particle size average of 102.3 ± 1.35 nm and polydispersity index (PDI) value of 0.314 ± 0.01. The particle surface charge was -35 ± 0.79 mV, confirming the stability of the particles. The particle shape was spherical, as shown through TEM analysis, and the presence of silver ions was confirmed through the EDS results. FT-IR data showed functional groups of biomolecules of the extract involved in the synthesis of AgNPs. The face-centered cubic (FCC) lattice of AgNPs was confirmed in the XRD pattern. The AgNPs had an effective antifungal activity against Candida albicans (C. albicans) that was better than that of the HME-AGN extract. In conclusion, this study suggests that the synthesis of AgNPs was improved by using the HME-AGN extract with increased water solubility through HME. In addition, it was suggested that the synthesized AgNPs can be used as an improved antifungal agent compared with the HME-AGN extract with antifungal activity.
Collapse
Affiliation(s)
- Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea
| |
Collapse
|
13
|
Okeke IJ, Oyeyemi OT, Morenikeji OA. Ovicidal and miracicidal activities of Calotropis procera and its green-synthesized nanotized derivative: a quest for new antifasciola agents. Acta Trop 2022; 236:106700. [PMID: 36181877 DOI: 10.1016/j.actatropica.2022.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
|
14
|
Kemala P, Idroes R, Khairan K, Ramli M, Jalil Z, Idroes GM, Tallei TE, Helwani Z, Safitri E, Iqhrammullah M, Nasution R. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022; 27:5310. [PMID: 36014547 PMCID: PMC9415655 DOI: 10.3390/molecules27165310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Herein, we report our success synthesizing silver nanoparticles (AgNPs) using aqueous extracts from the leaves and flowers of Calotropis gigantea growing in the geothermal manifestation Ie Seu-Um, Aceh Besar, Indonesia. C. gigantea aqueous extract can be used as a bio-reductant for Ag+→Ag0 conversion, obtained by 48h incubation of Ag+, and the extract mixture in a dark condition. UV-Vis characterization showed that the surface plasmon resonance (SPR) peaks of AgNPs-leaf C. gigantea (AgNPs-LCg) and AgNPs-flower C. gigantea (AgNPs-FCg) appeared in the wavelength range of 410-460 nm. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) revealed the agglomeration and spherical shapes of AgNPs-LCg and AgNPs-FCg with diameters ranging from 87.85 to 256.7 nm. Zeta potentials were observed in the range of -41.8 to -25.1 mV. The Kirby-Bauer disc diffusion assay revealed AgNPs-FCg as the most potent antimicrobial agent with inhibition zones of 12.05 ± 0.58, 11.29 ± 0.45, and 9.02 ± 0.10 mm for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. In conclusion, aqueous extract from the leaves or flowers of Calotropis gigantea may be used in the green synthesis of AgNPs with broad-spectrum antimicrobial activities.
Collapse
Affiliation(s)
- Pati Kemala
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Khairan Khairan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Zulkarnain Jalil
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Ghazi Mauer Idroes
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Zuchra Helwani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Muhammad Iqhrammullah
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Rosnani Nasution
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
15
|
Abdallah BM, Ali EM. Therapeutic Effect of Green Synthesized Silver Nanoparticles Using Erodium glaucophyllum Extract against Oral Candidiasis: In Vitro and In Vivo Study. Molecules 2022; 27:molecules27134221. [PMID: 35807474 PMCID: PMC9267989 DOI: 10.3390/molecules27134221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oral candidiasis (OC) is a fungal infection caused by an opportunistic fungi Candida albicans, which is found in the normal flora of healthy people. In this study, we examined the anti-candidal effect of green synthesized silver nanoparticles using leaf extract of Erodium glaucophyllum (EG-AgNPs) against C. albicans in vitro and in vivo. EG-AgNPs were synthesized for the first time using E. glaucophyllum extract and characterized by imaging (transmission electron microscopy (TEM), UV-VIS spectroscopy, zeta potential, X-ray diffraction (XRD), Energy dispersive x-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). A mouse model of OC was used for in vivo study. The agar well diffusion method showed the anti-candidal activity of EG-AgNPs against C. albicans with MIC 50 µg/mL. EG-AgNPs inhibited the dimorphic transition of C. albicans and suppressed the formation of biofilm by 56.36% and 52%, respectively. Additionally, EG-AgNPs significantly inhibited the production of phospholipases and proteinases by 30% and 45%, respectively. EG-AgNPs cause cytoplasm disintegration and deterioration of cell wall as imaged by SEM and TEM. Interestingly, EG-AgNPs did not display any cytotoxicity on the human gingival fibroblast-1 HGF-1 cell line at MIC concentrations. Topical treatment of the tongue of the OC mouse model with EG-AgNPs showed significant reduction in candidal tissue invasion, less inflammatory changes, and no tissue modification, in association with marked low scare and hyphal counts as compared to control group. In conclusion, our data demonstrated the potent inhibitory action of EG-AgNPs on the growth and morphogenesis of C. albicans in vitro and in vivo. Thus, EG-AgNPs represent a novel plausible therapeutic approach for treatment of OC.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(013)-5899430
| | - Enas M. Ali
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
16
|
Green Synthesis of Silver Nanoparticles Using Allium cepa var. Aggregatum Natural Extract: Antibacterial and Cytotoxic Properties. NANOMATERIALS 2022; 12:nano12101725. [PMID: 35630949 PMCID: PMC9145274 DOI: 10.3390/nano12101725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
The chemical content of plant excerpts can be efficiently employed to reduce the metal ions to nanoparticles in the one-pot green production method. Here, green production of silver nanoparticles (AC-AgNPs) is performed by means of Allium cepa var. Aggregatum (shallot) extract as a stabilizer and reducer. The shape, size, and morphology of resultant AC-AgNPs are examined by optical spectroscopy analysis such as UV for nucleation and coalescence processes of the AC-AgNPs. Through FTIR functional group is determined and through DLS size is defined, it was confirmed that metallic AgNPs were successfully synthesized through the green synthesis route, and these results agreed well with the results obtained in the XRD pattern along with TEM spectroscopy, where the TEM images confirm the formation of sphere-like nanostructures along with SAED analysis. The chemical characterization is performed with XPS; the obtained molecular species in the materials are determined from the energy profile. Antioxidant activity of AC-AgNPs versus DPPH substrate is carried out. Antibacterial activity is well established against Gram-negative and Gram-positive organisms. Cell viability is accomplished, followed by an MTT assay, and a cytotoxicity assay of AC-AgNPs on MCF—7 cell lines is also carried out. Highlights: (1). This study highlights the eco-friendly synthesis of silver nanoparticles from Allium cepa var. Aggregatum Natural Extract. (2). The synthesized AC-AgNPs were characterized by UV-VIS, FT-IR, XRD, TEM, and XPS. (3). The synthesized nanoparticles were well dispersed in nature and the size range of 35 ± 8 nm. (4). The anti-candidal activity of biosynthesized silver nanoparticles was evaluated against the following Gram-Negative organisms: Escherichia coli (E. coli), and the following Gram-positive organisms: Staphylococcus aureus strains. The biosynthesized AC-AgNPs showed enhanced antiseptic features anti both Gram-positive and negative organisms. (5). Besides, the in vitro cytotoxic outcomes of AC-AgNPs were assessed versus MCF-7 cancerous cells, and the reduction in the feasibility of cancer cells was established via MTT assay, which suggests potential biomedical applications.
Collapse
|
17
|
Zhang D, Yu F, Li H, Wang Q, Wang M, Qian H, Wu X, Wu F, Liu Y, Jiang S, Li P, Wang R, Li W. AgNPs reduce reproductive capability of female mouse for their toxic effects on mouse early embryo development. Hum Exp Toxicol 2022; 41:9603271221080235. [PMID: 35102757 DOI: 10.1177/09603271221080235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silver nanoparticles (AgNPs) are widely applied in the field of personal protection for their powerful toxic effects on cells, and recently, a new type of vaginal gel with AgNPs is used to protect the female reproductive tract from microbes and viruses. However, a high risk of AgNPs to the fetus and the underlying mechanism of AgNPs to interfere in embryo development still remain unclear. Thus, this study investigated the impact of two drugs of vaginal gel with AgNPs on reproductive capability of the female mouse by animal experiment. Then, kinetics of AgNPs affecting embryo development was investigated by in vitro embryos culturing, and cell membrane potential (CMP) of zygotes was analyzed by DiBAC4(3) staining. Results indicated that one of the drugs of vaginal gel certainly injured embryo development in spite of no apparent histological change found in ovaries and uteruses of drug-treated mice. In vitro embryo culturing discovered that the toxic effect of AgNPs on embryo development presented particle sizes and dose dependent, and AgNP treatment could rapidly trigger depolarization of the cell membrane of zygotes. Moreover, AgNPs changed the gene expression pattern of Oct-4 and Cdx2 in blastocysts. All these findings suggest that AgNPs can interfere with normal cellular status including cell membrane potential, which has not been noticed in previous studies on the impact of AgNPs on mammalian embryos. Thus, findings of this study alarm us the risk of applying vaginal gel with AgNPs in individual caring and protection of the female reproductive system.
Collapse
Affiliation(s)
- Di Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Fangfang Yu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Huanhuan Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Qiuyue Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Meiya Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Hongli Qian
- Central Laboratory of Clinical Department, 71531Haidian Maternal and Child Health Hospital, Haidian, Beijing, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Fengrui Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Shuanglin Jiang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital and Ruijin Hospital North, 71140Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|
18
|
Ali EM, Abdallah BM. Effective Inhibition of Invasive Pulmonary Aspergillosis by Silver Nanoparticles Biosynthesized with Artemisia sieberi Leaf Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:51. [PMID: 35010001 PMCID: PMC8746907 DOI: 10.3390/nano12010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022]
Abstract
Aspergillus fumigatus is one of the most common fungal pathogens that can cause a diversity of diseases ranging from invasive pulmonary aspergillosis (IPA) and aspergilloma to allergic syndromes. In this study, we investigated the antifungal effect of silver nanoparticles biosynthesized with Artemisia sieberi leaf extract (AS-AgNPs) against A. fumigatus in vitro and in vivo. The biosynthesized AS-AgNPs were characterized by imaging (transmission electron microscopy (TEM)), UV-VIS spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The microdilution method showed the antifungal activity of AS-AgNPs against A. fumigatus, with an MIC of 128 µg/mL. AS-AgNPs significantly inhibited the growth of hyphae in all directions, as imaged by SEM. Additionally, TEM on biofilm revealed invaginations of the cell membrane, a change in the vacuolar system, and the presence of multilamellar bodies within vacuoles. Interestingly, AS-AgNPs displayed low cytotoxicity on the A549 human lung cell line in vitro. Treatment of an invasive pulmonary aspergillosis (IPA) mouse model with AS-AgNPs demonstrated the potency of AS-AgNPs to significantly reduce lung tissue damage and to suppress the elevated levels of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-17 (IL-17). The therapeutic potential of AS-AgNPs was found to be due to their direct action to suppress the fungal burden and gliotoxin production in the lungs. In addition, AS-AgNPs reduced the oxidative stress in the lungs by increasing the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Thus, our data indicate the biosynthesized AS-AgNPs as a novel antifungal alternative treatment against aspergillosis.
Collapse
Affiliation(s)
- Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
19
|
Joshi KM, Shelar A, Kasabe U, Nikam LK, Pawar RA, Sangshetti J, Kale BB, Singh AV, Patil R, Chaskar MG. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112592. [DOI: 10.1016/j.msec.2021.112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
|
20
|
Dziendzikowska K, Węsierska M, Gromadzka-Ostrowska J, Wilczak J, Oczkowski M, Męczyńska-Wielgosz S, Kruszewski M. Silver Nanoparticles Impair Cognitive Functions and Modify the Hippocampal Level of Neurotransmitters in a Coating-Dependent Manner. Int J Mol Sci 2021; 22:12706. [PMID: 34884506 PMCID: PMC8657429 DOI: 10.3390/ijms222312706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their potent antibacterial properties, silver nanoparticles (AgNPs) are widely used in industry and medicine. However, they can cross the brain-blood barrier, posing a risk to the brain and its functions. In our previous study, we demonstrated that oral administration of bovine serum albumin (BSA)-coated AgNPs caused an impairment in spatial memory in a dose-independent manner. In this study, we evaluated the effects of AgNPs coating material on cognition, spatial memory functioning, and neurotransmitter levels in rat hippocampus. AgNPs coated with BSA (AgNPs(BSA)), polyethylene glycol (AgNPs(PEG)), or citrate (AgNPs(Cit)) or silver ions (Ag+) were orally administered at a dose of 0.5 mg/kg b.w. to male Wistar rats for a period of 28 days, while the control (Ctrl) rats received 0.2 mL of water. The acquisition and maintenance of spatial memory related to place avoidance were assessed using the active allothetic place avoidance task, in which rats from AgNPs(BSA), AgNPs(PEG), and Ag+ groups performed worse than the Ctrl rats. In the retrieval test assessing long-term memory, only rats from AgNPs(Cit) and Ctrl groups showed memory maintenance. The analysis of neurotransmitter levels indicated that the ratio between serotonin and dopamine concentration was disturbed in the AgNPs(BSA) rats. Furthermore, treatment with AgNPs or Ag+ resulted in the induction of peripheral inflammation, which was reflected by the alterations in the levels of serum inflammatory mediators. In conclusion, depending on the coating material used for their stabilization, AgNPs induced changes in memory functioning and concentration of neurotransmitters.
Collapse
Affiliation(s)
- Katarzyna Dziendzikowska
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland; (J.G.-O.); (M.O.)
| | - Małgorzata Węsierska
- Laboratory of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Gromadzka-Ostrowska
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland; (J.G.-O.); (M.O.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Michał Oczkowski
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland; (J.G.-O.); (M.O.)
| | - Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (S.M.-W.); (M.K.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (S.M.-W.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
21
|
Zhang D, Yu F, Li H, Wang Q, Wang M, Qian H, Wu X, Wu F, Liu Y, Jiang S, Li P, Wang R, Li W. AgNPs reduce reproductive capability of female mouse for their toxic effects on mouse early embryo development. Hum Exp Toxicol 2021; 40:S246-S256. [PMID: 34414805 DOI: 10.1177/09603271211038742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are widely applied in the field of personal protection for their powerful toxic effects on cells, and recently, a new type of vaginal gel with AgNPs is used to protect the female reproductive tract from microbes and viruses. However, a high risk of AgNPs to the fetus and the underlying mechanism of AgNPs to interfere in embryo development still remain unclear. Thus, this study investigated the impact of two drugs of vaginal gel with AgNPs on reproductive capability of the female mouse by animal experiment. Then, kinetics of AgNPs affecting embryo development was investigated by in vitro embryos culturing, and cell membrane potential (CMP) of zygotes was analyzed by DiBAC4(3) staining. Results indicated that one of the drugs of vaginal gel certainly injured embryo development in spite of no apparent histological change found in ovaries and uteruses of drug-treated mice. In vitro embryo culturing discovered that the toxic effect of AgNPs on embryo development presented particle sizes and dose dependent, and AgNP treatment could rapidly trigger depolarization of the cell membrane of zygotes. Moreover, AgNPs changed the gene expression pattern of Oct-4 and Cdx2 in blastocysts. All these findings suggest that AgNPs can interfere with normal cellular status including cell membrane potential, which has not been noticed in previous studies on the impact of AgNPs on mammalian embryos. Thus, findings of this study alarm us the risk of applying vaginal gel with AgNPs in individual caring and protection of the female reproductive system.
Collapse
Affiliation(s)
- Di Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Fangfang Yu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Huanhuan Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Qiuyue Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Meiya Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Hongli Qian
- Central Laboratory of Clinical Department, 71531Haidian Maternal and Child Health Hospital, Haidian, Beijing, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Fengrui Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Shuanglin Jiang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital and Ruijin Hospital North, 71140Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Institute of Life and Food Engineering, 118409Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|
22
|
Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P. Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity. Molecules 2021; 26:4986. [PMID: 34443574 PMCID: PMC8398508 DOI: 10.3390/molecules26164986] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | | | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
23
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
24
|
Abdallah BM, Ali EM. Green Synthesis of Silver Nanoparticles Using the Lotus lalambensis Aqueous Leaf Extract and Their Anti-Candidal Activity against Oral Candidiasis. ACS OMEGA 2021; 6:8151-8162. [PMID: 33817474 PMCID: PMC8014928 DOI: 10.1021/acsomega.0c06009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 05/31/2023]
Abstract
Oral candidiasis is widely spread in both humans and animals, which is caused mainly by Candida albicans. In this study, we aimed to biosynthesize silver nanoparticles (AgNPs) for the first time using the Lotus lalambensis Schweinf leaf extract (L-AgNPs) and investigated their anti-candidal potency alone or in combination with the leaf extract of L. lalambensis (L-AgNPs/LL) against C. albicans. The biosynthesized L-AgNPs were characterized by imaging (transmission electron microscopy, TEM), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results of the disk diffusion method showed the potent synergistic anti-candidal activity of L-AgNPs/LL (24 mm inhibition zone). L-AgNPs/LL completely inhibited the morphogenesis of C. albicans and suppressed the adhesion and the formation of the biofilm of C. albicans by 82.5 and 78.7%, respectively. Further, L-AgNPs/LL inhibited the production of antioxidant enzymes of C. albicans by 80%. SEM and TEM revealed deteriorations in the cell wall ultrastructure in L-AgNPs/LL-treated C. albicans. Interestingly, L-AgNPs/LL showed less than 5% cytotoxicity when examined with either the primary bone marrow derived mesenchymal stem cell (BMSCs) or MCF-7 cell line at MIC values of L-AgNPs/LL. In conclusion, we identified L-AgNPs/LL as a potential biosynthesized-based drug for oral candidiasis in humans and animals.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Department
of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Endocrine
Research (KMEB), Department of Endocrinology, University of Southern Denmark, Odense DK-5000, Denmark
| | - Enas M. Ali
- Department
of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
25
|
Gupta P, Goel A, Singh KR, Meher MK, Gulati K, Poluri KM. Dissecting the anti-biofilm potency of kappa-carrageenan capped silver nanoparticles against Candida species. Int J Biol Macromol 2021; 172:30-40. [PMID: 33440209 DOI: 10.1016/j.ijbiomac.2021.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Global antimicrobial crisis and advent of drug resistant fungal strains has substantially distressed disease management for clinicians. Biodegradable silver nanoparticles (AgNps) emerge as an excellent alternative remedial option. In the current study, the anti-biofilm activity of microwave irradiated kappa-carrageenan (CRG) capped AgNps against Candida albicans, and Candida glabrata was investigated in terms of their effect on reactive oxygen species (ROS) generation, cellular morphology, biochemical composition, and the activity of enzymes of extracellular matrix. Minimum inhibitory concentration and fungicidal concentration value of CRG-AgNps against both Candida spp. ranged between 400 and 500 μg/mL. The 80% of Candida biofilm was inhibited and eradicated by CRG-AgNps at a concentration of ~300 μg/mL. Microscopic studies indicate that CRG-AgNps caused morphological damage through membrane disruption and pore formation. Further, CRG-AgNps generated ROS in a concentration-dependent manner and modulated the composition of Candida biofilm ECM by increasing the carbohydrate and eDNA content. CRG-AgNps also significantly inactivated the hydrolytic enzymes, thus hindering the biofilm forming ability. In conclusion, all these results suggest that the CRG-AgNps are potential antifungal agents against Candida biofilms, and they inhibit/eradicate the fungal biofilms through multiple signalling mechanisms.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Apoorva Goel
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Rani Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
26
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|
27
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
28
|
Magnetic Nanoparticles of Fe3O4 Biosynthesized by Cnicus benedictus Extract: Photocatalytic Study of Organic Dye Degradation and Antibacterial Behavior. Processes (Basel) 2020. [DOI: 10.3390/pr8080946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, the use of sustainable chemistry as an ecological alternative for the generation of products or processes that are free of a polluting substance has assumed a preponderant role. The aim of this work is to propose a bioinspired, facile, low cost, non-toxic, and environmentally friendly alternative to obtaining magnetic nanoparticles with a majority phase of magnetite (Fe3O4). It is important to emphasize that the synthesis was based on the chemical reduction through the Cnicus benedictus extract, whose use as reducing agent has not been reported in the synthesis of iron oxides nanoparticles. In addition, the Cnicus benedictus is an abundant endemic plant in Mexico with several medicinal properties and a large number of natural antioxidants. The obtained nanoparticles exhibited significant magnetic and antibacterial properties and an enhanced photocatalytic activity. The crystallite size of the Fe3O4 nanoparticles (Fe3O4 NP’s) was calculated by the Williamson-Hall method. The photocatalytic properties of the Fe3O4 NP’s were studied by kinetics absorptions models in the Congo red (CR) degradation. Finally, the antibacterial effects of the Fe3O4 NPs were evaluated mediated the Kirby–Bauer method against Escherichia coli and Staphylococcus aureus bacteria. This route offers a green alternative to obtain Fe3O4 NPs with remarkable magnetic, photocatalytic, and antibacterial properties.
Collapse
|
29
|
Nanomaterials in Cosmetics: Recent Updates. NANOMATERIALS 2020; 10:nano10050979. [PMID: 32443655 PMCID: PMC7279536 DOI: 10.3390/nano10050979] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
This review paper collects the recent updates regarding the use of nanomaterials in cosmetics. Special focus is given to the applications of nanomaterials in the cosmetic industry, their unique features, as well as the advantages of nanoscale ingredients compared to non-nanoscale products. The state-of-the-art practices for physicochemical and toxicological characterization of nanomaterials are also reviewed. Moreover, special focus is given to the current regulations and safety assessments that are currently in place regarding the use of nanomaterials in cosmetics—the new 2019 European guidance for the safety assessment of nanomaterials in cosmetics, together with the new proposed methodologies for the toxicity evaluation of nanomaterials. Concerns over health risks have limited the further incorporation of nanomaterials in cosmetics, and since new nanomaterials may be used in the future by the cosmetic industry, a detailed characterization and risk assessment are needed to fulfill the standard safety requirements.
Collapse
|