1
|
Elsayed AM, Ahmed AM, Aly AH, Eissa MF, Tammam MT. Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO 2 photonic crystal. RSC Adv 2024; 14:26050-26058. [PMID: 39161431 PMCID: PMC11331580 DOI: 10.1039/d4ra05116e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm-1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.
Collapse
Affiliation(s)
- Asmaa M Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
- Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Technical Sciences, Western Caspian University Baku 1001 Azerbaijan
| | - M F Eissa
- Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - M T Tammam
- Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
2
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
3
|
Bi H, Yang M, You R. Advances in terahertz metasurface graphene for biosensing and application. DISCOVER NANO 2023; 18:63. [PMID: 37091985 PMCID: PMC10105365 DOI: 10.1186/s11671-023-03814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Based on the extraordinary electromagnetic properties of terahertz waves, such as broadband, low energy, high permeability, and biometric fingerprint spectra, terahertz sensors show great application prospects in the biochemical field. However, the sensitivity of terahertz sensing technology is increasingly required by modern sensing demands. With the development of terahertz technology and functional materials, graphene-based terahertz metasurface sensors with the advantages of high sensitivity, fingerprint identification, nondestructive and anti-interference are gradually gaining attention. In addition to providing ideas for terahertz biosensors, these devices have attracted in-depth research and development by scientists. An overview of graphene-based terahertz metasurfaces and their applications in the detection of biochemical molecules is presented. This includes sensor mechanism research, graphene metasurface index evaluation, protein and nucleic acid sensors, and other chemical molecule sensing. A comparative analysis of graphene, nanomaterials, silicon, and metals to develop material-integrated metasurfaces. Furthermore, a brief summary of the main performance results of this class of devices is presented, along with suggestions for improvements to the existing shortcoming.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| | - Maosheng Yang
- School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an, 237012 China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| |
Collapse
|
4
|
Kim HS, Jun SW, Ahn YH. Developing a Novel Terahertz Fabry-Perot Microcavity Biosensor by Incorporating Porous Film for Yeast Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:5797. [PMID: 37447646 DOI: 10.3390/s23135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
We present a novel terahertz (THz) Fabry-Perot (FP) microcavity biosensor that uses a porous polytetrafluoroethylene (PTFE) supporting film to improve microorganism detection. The THz FP microcavity confines and enhances fields in the middle of the cavity, where the target microbial film is placed with the aid of a PTFE film having a dielectric constant close to unity in the THz range. The resonant frequency shift increased linearly with increasing amount of yeasts, without showing saturation behavior under our experimental conditions. These results agree well with finite-difference time-domain (FDTD) simulations. The sensor's sensitivity was 11.7 GHz/μm, close to the optimal condition of 12.5 GHz/μm, when yeast was placed at the cavity's center, but no frequency shift was observed when the yeast was coated on the mirror side. We derived an explicit relation for the frequency shift as a function of the index, amount, and location of the substances that is consistent with the electric field distribution across the cavity. We also produced THz transmission images of yeast-coated PTFE, mapping the frequency shift of the FP resonance and revealing the spatial distribution of yeast.
Collapse
Affiliation(s)
- Hwan Sik Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Seung Won Jun
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Ren M, Ji C, Tang X, Tian H, Jiang L, Dai X, Wu X, Xiang Y. Sensitivity-Tunable Terahertz Liquid/Gas Biosensor Based on Surface Plasmon Resonance with Dirac Semimetal. SENSORS (BASEL, SWITZERLAND) 2023; 23:5520. [PMID: 37420684 DOI: 10.3390/s23125520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
In this paper, we study the sensitivity-tunable terahertz (THz) liquid/gas biosensor in a coupling prism-three-dimensional Dirac semimetal (3D DSM) multilayer structure. The high sensitivity of the biosensor originates from the sharp reflected peak caused by surface plasmon resonance (SPR) mode. This structure achieves the tunability of sensitivity due to the fact that the reflectance could be modulated by the Fermi energy of 3D DSM. Besides, it is found that the sensitivity curve depends heavily on the structural parameters of 3D DSM. After parameter optimization, we obtained sensitivity over 100°/RIU for liquid biosensor. We believe this simple structure provides a reference idea for realizing high sensitivity and a tunable biosensor device.
Collapse
Affiliation(s)
- Mengjiao Ren
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Chengpeng Ji
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xueyan Tang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Haishan Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Leyong Jiang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaoyu Dai
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xinghua Wu
- Key Laboratory for Microstructural Functional Materials of Jiangxi Province, College of Science, Jiujiang University, Jiujiang 332005, China
| | - Yuanjiang Xiang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Bao Y, Ren M, Ji C, Dong J, Jiang L, Dai X. Terahertz Biosensor Based on Mode Coupling between Defect Mode and Optical Tamm State with Dirac Semimetal. BIOSENSORS 2022; 12:1050. [PMID: 36421169 PMCID: PMC9688746 DOI: 10.3390/bios12111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Bulk Dirac semimetal (BDS) has emerged as a "3D graphene" material for the development of optical devices in the past few years. In this study, a BDS-based tunable highly sensitive terahertz (THz) biosensor is proposed by using a Dirac semimetal/Bragg reflector multilayer structure. The high sensitivity of the biosensor originates from the sharp Fano resonance peak caused by coupling the Optical Tamm State (OTS) mode and defect mode. Besides, the sensitivity of the proposed structure is sensitive to the Fermi energy of Dirac semimetal and the refractive index of the sensing medium. The maximum sensitivity of 1022°/RIU is obtained by selecting structural and material parameter appropriately, which has certain competitiveness compared to conventional surface plasmon resonance (SPR) sensors. From the standpoint of the fabrication facility and integration, we judged that the BDS-based layered structure has the potential application in biosensor field.
Collapse
Affiliation(s)
- Yuwen Bao
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Mengjiao Ren
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Chengpeng Ji
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Jun Dong
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Leyong Jiang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaoyu Dai
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Liu Y, Zheng Q, Yuan H, Wang S, Yin K, Dai X, Zou X, Jiang L. High Sensitivity Terahertz Biosensor Based on Mode Coupling of a Graphene/Bragg Reflector Hybrid Structure. BIOSENSORS 2021; 11:bios11100377. [PMID: 34677333 PMCID: PMC8533687 DOI: 10.3390/bios11100377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, a high-sensitivity terahertz (THz) biosensor is achieved by using a graphene/Bragg reflector hybrid structure. This high-sensitivity THz biosensor is developed from the sharp Fano resonance transmission peak created by coupling the graphene Tamm plasmons (GTPs) mode to a defect mode. It is found that the proposed THz biosensor is highly sensitive to the Fermi energy of graphene, as well as the thickness and refractive index of the sensing medium. Through specific parameter settings, the composite structure can achieve both a liquid biosensor and a gas biosensor. For the liquid biosensor, the maximum sensitivity of > 1000 °/RIU is obtained by selecting appropriate parameters. We believe the proposed layered hybrid structure has the potential to fabricate graphene-based high-sensitivity biosensors.
Collapse
Affiliation(s)
- Yamei Liu
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Qiwen Zheng
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Hongxia Yuan
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Shenping Wang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Keqiang Yin
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Xiaoyu Dai
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| | - Leyong Jiang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; (Y.L.); (Q.Z.); (H.Y.); (S.W.); (K.Y.)
| |
Collapse
|
8
|
Wang L, Liu J, Ren B, Cui Y, Song J, Jiang Y. Controlling Tamm phonons using hBN and a distributed Bragg reflector for narrowband refractive index sensing. APPLIED OPTICS 2021; 60:4986-4992. [PMID: 34143062 DOI: 10.1364/ao.426211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Optical Tamm state with sharp reflection dip provides the sensing potential combined with high sensitivity. In this paper, we numerically demonstrate that narrowband refractive index sensing can be realized in a distributed Bragg reflector (DBR) structure with hexagonal boron nitride (hBN). Here, we show that the sensitivity and narrowband properties can not only be regularly governed by different analyte thickness but also exhibit dependence on the number of DBR pairs and the thickness of the hBN layer. With varying the analyte index and optimized analyte thickness, the deep reflectance dip can be sustained with the sensitivity (figure of merit, FOM) close to 3.02 µm/RIU (1093/RIU). In addition, the different analyte categories can be detected through adjusting the thickness of the analyte-filled cavity. High sensitivity, combined with ultra-high FOM originated from strong Tamm phonon mode, offers a promising platform to detect the smallest variation of the refractive index.
Collapse
|
9
|
Zhu W, Xu H, Pan J, Zhang S, Zheng H, Zhong Y, Yu J, Chen Z. Black phosphorus terahertz sensing based on photonic spin Hall effect. OPTICS EXPRESS 2020; 28:25869-25878. [PMID: 32906868 DOI: 10.1364/oe.399071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A novel terahertz (THz) sensing scheme is proposed based on the photonic spin Hall effect (PSHE). By illumining a paraxial Gaussian THz beam onto a black phosphorus (BP)-based Tamm structure, the reflected beam will undergo in-plane spin splitting, i.e., the centroids of two opposite spin components separate spatially. Due to Tamm plasmon resonance, one of the spin components is very sensitive to the refractive index changes of the analyte layer sandwiched by monolayer BP and distributed Bragg reflector. The sensitivity of the spin-dependent shift can be up to 2804 mm/RIU with a refractive index resolution of ∼10-8 RIU. The sensitivity and dynamic sensing region can be flexibly tuned by the BP rotation angle, thickness of analyte layer, or operation frequency. Therefore, the proposed PSHE-based THz sensing provides a new avenue for the development of high-performance THz sensors; thus, we may find applications in chemical sensing and biosensing.
Collapse
|