1
|
Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. TiO 2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Dent Mater 2024; 40:907-920. [PMID: 38714394 DOI: 10.1016/j.dental.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVES Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO2 nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface. SOURCES For that purpose, was performed a systematic search on the bases PubMed, Lilacs, Embase, Web Of Science, Cinahl, and Cochrane Central, as well as, manual searches and gray literature. STUDY SELECTION The searches resulted in 742 articles, of which 156 followed for full-text reading. Then, 37 were included in the systematic review and 8 were included in meta-analysis. RESULTS Fifteen studies revealed significant antibacterial protection using TiO2 nanotube surfaces, while 15 studies found no statistical difference between control and nanotextured surfaces. Meta-analysis of in vitro studies demonstrated relevant bacterial reduction only for studies investigating Staphylococcus aureus in a period of 6 h. Meta-analysis of in vivo studies revealed three times lower bacterial adhesion and proliferation on TiO2 nanotube surfaces. CONCLUSIONS TiO2 nanotube topography as a surface for dental implants in preclinical research has demonstrated a positive relationship with antibacterial properties, nevertheless, factors such as anodization protocols, bacteria strains, and mono-culture methods should be taken into consideration, consequently, further studies are necessary to promote clinical translatability.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Georgia Farina
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza B S Sturmer
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Yang X, Yu Q, Wang X, Gao W, Zhou Y, Yi H, Tang X, Zhao S, Gao F, Tang X. Progress in the application of spray-type antibacterial coatings for disinfection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Pawłowski Ł, Wawrzyniak J, Banach-Kopeć A, Cieślik BM, Jurak K, Karczewski J, Tylingo R, Siuzdak K, Zieliński A. Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers. BIOMATERIALS ADVANCES 2022; 138:212950. [PMID: 35913239 DOI: 10.1016/j.bioadv.2022.212950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter on such a modified surface. To ensure a controlled release of the bactericidal substance, the samples were additionally coated with a pH-sensitive chitosan/Eudragit 100 coating, also exhibiting bactericidal properties. The modified titanium samples were characterized using SEM, EDS, AFM, Raman, and XPS techniques. The wettability, corrosion properties, adhesion of the coating to the substrate, the release of AgNPs into solutions simulating body fluids at different pH, and antibacterial properties were further investigated. The obtained composite coatings were hydrophilic, adjacent to the surface, and corrosion-resistant. An increase in the amount of silver released as ions or metallic particles into a simulated body fluid solution at acidic pH was observed for modified samples with the biopolymer coating after three days of exposure avoiding burst effect. The proposed modification was effective against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Łukasz Pawłowski
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Jakub Wawrzyniak
- Center for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kacper Jurak
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk. Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Center for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
| | - Andrzej Zieliński
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:201-218. [PMID: 35223351 PMCID: PMC8848344 DOI: 10.3762/bjnano.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 06/06/2023]
Abstract
Significant advancement in the field of nanotechnology has raised the possibility of applying potent engineered biocompatible nanomaterials within biological systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility, corrosion resistance, and low toxicity, titania nanomaterials have revolutionized therapeutic approaches. Additionally, titania provides an exceptional choice for developing innovative medical devices and the integration of functional moieties that can modulate the biological responses. Thus, the current review aims to present a comprehensive and up-to-date overview of TiO2-based nanotherapeutics and the corresponding future challenges.
Collapse
Affiliation(s)
- Padmavati Sahare
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Paulina Govea Alvarez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Juan Manual Sanchez Yanez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
| | | | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Querétaro, Mexico
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| |
Collapse
|
5
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
6
|
Rajeswari SR, Nandini V, Perumal A, Rajendran, Gowda T. Influence of Titania Nanotubes Diameter on Its Antibacterial Efficacy against Periodontal Pathogens: An In vitro Analysis. J Pharm Bioallied Sci 2021; 13:S284-S288. [PMID: 34447094 PMCID: PMC8375917 DOI: 10.4103/jpbs.jpbs_743_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/04/2022] Open
Abstract
Background Peri implant infection in dental implantology is a frequently encountered clinical problem. Titania nanotubes (TNTs) are recent improvement in surface characterization, showing promising results. Aim The nanosurface parameter tweaking has been implicated with profound change in the microbiological and biological response. Hence, it was proposed that alteration in the nanotube diameter could have positive influence in its antibacterial activity against salient periodontal pathogens. Materials and Methods Commercially, pure titanium discs of 8-mm diameter and 1.5-mm thickness were prepared. Polished titanium discs were used as control (Group A). Vertically oriented, structured TNTs were fabricated by anodization technique and grouped as B and C, having nanotube diameter, 40 and 80 nm subsequently. The surface characterizations of the samples were done by scanning electron microscope analysis. The antibacterial activity was evaluated with the bacterial colony counting method, at 24 h, 72 h, and 1-week intervals. Statistical Analysis The one-way analysis of variance and Tukey's honest significance post hoc test were employed to assess the statistical significance. Results The 80 nm nanotubes showed better antibacterial activity comparatively, at all three-time intervals investigated. Conclusion The optimal TNT diameter of 80 nm was the most effective from an antimicrobial stand point of view.
Collapse
Affiliation(s)
- S Raja Rajeswari
- Department of Periodontics, SRM Institute of Science and Technology, Davangere, Karnataka, India
| | - Vidyashree Nandini
- Department of Prosthodontics, SRM Institute of Science and Technology, Davangere, Karnataka, India
| | - Agilan Perumal
- Deparment of Chemistry, Anna University, Davangere, Karnataka, India
| | - Rajendran
- Deparment of Chemistry, Anna University, Davangere, Karnataka, India
| | - Triveni Gowda
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
7
|
Camargo SEA, Xia X, Fares C, Ren F, Hsu SM, Budei D, Aravindraja C, Kesavalu L, Esquivel-Upshaw JF. Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium. MATERIALS 2021; 14:ma14164357. [PMID: 34442878 PMCID: PMC8398300 DOI: 10.3390/ma14164357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate the potential of titanium nanotubes to promote the proliferation of human osteoblasts and to reduce monomicrobial biofilm adhesion. A secondary objective was to determine the effect of silicon carbide (SiC) on these nanostructured surfaces. Anodized titanium sheets with 100-150 nm nanotubes were either coated or not coated with SiC. After 24 h of osteoblast cultivation on the samples, cells were observed on all titanium sheets by SEM. In addition, the cytotoxicity was evaluated by CellTiter-BlueCell assay after 1, 3, and 7 days. The samples were also cultivated in culture medium with microorganisms incubated anaerobically with respective predominant periodontal bacteria viz. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia as monoinfection at 37 °C for 30 days. The biofilm adhesion and coverage were evaluated through surface observation using Scanning Electron Microscopy (SEM). The results demonstrate that Ti nanostructured surfaces induced more cell proliferation after seven days. All groups presented no cytotoxic effects on human osteoblasts. In addition, SEM images illustrate that Ti nanostructured surfaces exhibited lower biofilm coverage compared to the reference samples. These results indicate that Ti nanotubes promoted osteoblasts proliferation and induced cell proliferation on the surface, compared with the controls. Ti nanotubes also reduced biofilm adhesion on titanium implant surfaces.
Collapse
Affiliation(s)
- Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
| | - Xinyi Xia
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Chaker Fares
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Fan Ren
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
| | | | - Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA; (C.A.); (L.K.)
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA; (C.A.); (L.K.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
- Correspondence: ; Tel.: +1-352-273-6928
| |
Collapse
|
8
|
Abstract
Implant-associated infections (IAIs) are among the most intractable and costly complications in implant surgery. They can lead to surgery failure, a high economic burden, and a decrease in patient quality of life. This manuscript is devoted to introducing current antimicrobial strategies for additively manufactured (AM) titanium (Ti) implants and fostering a better understanding in order to pave the way for potential modern high-throughput technologies. Most bactericidal strategies rely on implant structure design and surface modification. By means of rational structural design, the performance of AM Ti implants can be improved by maintaining a favorable balance between the mechanical, osteogenic, and antibacterial properties. This subject becomes even more important when working with complex geometries; therefore, it is necessary to select appropriate surface modification techniques, including both topological and chemical modification. Antibacterial active metal and antibiotic coatings are among the most commonly used chemical modifications in AM Ti implants. These surface modifications can successfully inhibit bacterial adhesion and biofilm formation, and bacterial apoptosis, leading to improved antibacterial properties. As a result of certain issues such as drug resistance and cytotoxicity, the development of novel and alternative antimicrobial strategies is urgently required. In this regard, the present review paper provides insights into the enhancement of bactericidal properties in AM Ti implants.
Collapse
|