1
|
Prabhu S, Murugan G, Imran M, Arockiaraj M, Alam MM, Ghani MU. Several distance and degree-based molecular structural attributes of cove-edged graphene nanoribbons. Heliyon 2024; 10:e34944. [PMID: 39170540 PMCID: PMC11336347 DOI: 10.1016/j.heliyon.2024.e34944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
A carbon-based material with a broad scope of favourable developments is called graphene. Recently, a graphene nanoribbon with cove-edged was integrated by utilizing a bottom-up liquid-phase procedure, and it can be geometrically viewed as a hybrid of the armchair and the zigzag edges. It is indeed a type of nanoribbon containing asymmetric edges made up of sequential hexagons with impressive mechanical and electrical characteristics. Topological indices are numerical values associated with the structure of a chemical graph and are used to predict various physical, chemical, and biological properties of molecules. They are derived from the graph representation of molecules, where atoms are represented as vertices and bonds as edges. In this article, we derived the exact topological expressions of cove-edged graphene nanoribbons based on the graph-theoretical structural measures that help reduce the number of repetitive laboratory tasks necessary for studying the physicochemical characteristics of graphene nanoribbons with curved edges.
Collapse
Affiliation(s)
- S. Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | - G. Murugan
- Department of Mathematics, Chennai Institute of Technology, Chennai 600069, India
| | - Muhammad Imran
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, P. O. Box 15551, United Arab Emirates
| | | | - Mohammad Mahtab Alam
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Usman Ghani
- Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, 64200, Rahim Yar Khan, Pakistan
| |
Collapse
|
2
|
Arockiaraj M, Fiona JC, Kavitha SRJ, Shalini AJ, Balasubramanian K. Topological and Spectral Properties of Wavy Zigzag Nanoribbons. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010152. [PMID: 36615349 PMCID: PMC9822221 DOI: 10.3390/molecules28010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Low-dimensional graphene-based nanomaterials are interesting due to their cutting-edge electronic and magnetic properties. Their large surface area, strong mechanical resistance, and electronic properties have enabled potential pharmaceutical and opto-electronic applications. Graphene nanoribbons (GNRs) are graphene strips of nanometer size possessing zigzag and armchair edge geometries with tunable widths. Despite the recent developments in the characterization, design and synthesis of GNRs, the study of electronic, magnetic and topological properties, GNRs continue to pose a challenge owing to their multidimensionality. In this study, we obtain the topological and electronic properties of a series of wave-like nanoribbons comprising nanographene units with zigzag-shaped edges. The edge partition techniques based on the convex components are employed to compute the mathematical formulae of molecular descriptors for the wave-like zigzag GNRs. We have also obtained the spectral and energetic properties including HOMO-LUMO gaps, bond delocalization energies, resonance energies, 13C NMR and ESR patterns for the GNRs. All of these computations reveal zero to very low HOMO-LUMO gaps that make these nanoribbons potential candidates for topological spintronics.
Collapse
Affiliation(s)
| | - J. Celin Fiona
- Department of Mathematics, Loyola College, Chennai 600034, India
| | | | - Arul Jeya Shalini
- Department of Mathematics, Women’s Christian College, Chennai 600006, India
| | - Krishnan Balasubramanian
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
- Correspondence:
| |
Collapse
|
3
|
Special Issue on Advanced Mechanical Modeling of Nanomaterials and Nanostructures. NANOMATERIALS 2022; 12:nano12132291. [PMID: 35808127 PMCID: PMC9268143 DOI: 10.3390/nano12132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
|
4
|
Saravanan B, Prabhu S, Arulperumjothi M, Julietraja K, Siddiqui MK. Molecular Structural Characterization of Supercorenene and Triangle-Shaped Discotic Graphene. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- B. Saravanan
- Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, India
| | - Savari Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, India
| | - M. Arulperumjothi
- Department of Mathematics, Saveetha Engineering College, Chennai, India
| | - K. Julietraja
- Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India
| | | |
Collapse
|
5
|
Sun CL, Lin CH, Kuo CH, Huang CW, Nguyen DD, Chou TC, Chen CY, Lu YJ. Visible-Light-Assisted Photoelectrochemical Biosensing of Uric Acid Using Metal-Free Graphene Oxide Nanoribbons. NANOMATERIALS 2021; 11:nano11102693. [PMID: 34685134 PMCID: PMC8538689 DOI: 10.3390/nano11102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022]
Abstract
In this study, we demonstrate the visible-light-assisted photoelectrochemical (PEC) biosensing of uric acid (UA) by using graphene oxide nanoribbons (GONRs) as PEC electrode materials. Specifically, GONRs with controlled properties were synthesized by the microwave-assisted exfoliation of multi-walled carbon nanotubes. For the detection of UA, GONRs were adopted to modify either a screen-printed carbon electrode (SPCE) or a glassy carbon electrode (GCE). Cyclic voltammetry analyses indicated that all Faradaic currents of UA oxidation on GONRs with different unzipping/exfoliating levels on SPCE increased by more than 20.0% under AM 1.5 irradiation. Among these, the GONRs synthesized under a microwave power of 200 W, namely GONR(200 W), exhibited the highest increase in Faradaic current. Notably, the GONR(200 W)/GCE electrodes revealed a remarkable elevation (~40.0%) of the Faradaic current when irradiated by light-emitting diode (LED) light sources under an intensity of illumination of 80 mW/cm2. Therefore, it is believed that our GONRs hold great potential for developing a novel platform for PEC biosensing.
Collapse
Affiliation(s)
- Chia-Liang Sun
- Biomedical Engineering Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333323, Taiwan; (C.-H.L.); (C.-H.K.); (C.-W.H.)
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- Correspondence: or (C.-L.S.); (Y.-J.L.)
| | - Cheng-Hsuan Lin
- Biomedical Engineering Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333323, Taiwan; (C.-H.L.); (C.-H.K.); (C.-W.H.)
| | - Chia-Heng Kuo
- Biomedical Engineering Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333323, Taiwan; (C.-H.L.); (C.-H.K.); (C.-W.H.)
| | - Chia-Wei Huang
- Biomedical Engineering Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333323, Taiwan; (C.-H.L.); (C.-H.K.); (C.-W.H.)
| | - Duc Dung Nguyen
- Center for High Technology Development, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Tsu-Chin Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Cheng-Ying Chen
- Center for Plasma and Thin Film Technologies (CPTFT), Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Yu-Jen Lu
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- Correspondence: or (C.-L.S.); (Y.-J.L.)
| |
Collapse
|
6
|
Kalosakas G, Lathiotakis NN, Papagelis K. Width Dependent Elastic Properties of Graphene Nanoribbons. MATERIALS 2021; 14:ma14175042. [PMID: 34501132 PMCID: PMC8433791 DOI: 10.3390/ma14175042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
The mechanical response of graphene nanoribbons under uniaxial tension, as well as its dependence on the nanoribbon width, is presented by means of numerical simulations. Both armchair and zigzag edged graphene nanoribbons are considered. We discuss results obtained through two different theoretical approaches, viz. density functional methods and molecular dynamics atomistic simulations using empirical force fields especially designed to describe interactions within graphene sheets. Apart from the stress-strain curves, we calculate several elastic parameters, such as the Young’s modulus, the third-order elastic modulus, the intrinsic strength, the fracture strain, and the Poisson’s ratio versus strain, presenting their variation with the width of the nanoribbon.
Collapse
Affiliation(s)
- George Kalosakas
- Materials Science Department, University of Patras, GR-26504 Rio, Greece
- Correspondence: ; Tel.: +30-2610-996310
| | - Nektarios N. Lathiotakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece;
| | - Konstantinos Papagelis
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Duan Q, Xie J, Xia G, Xiao C, Yang X, Xie Q, Huang Z. Molecular Dynamics Simulation for the Effect of Fluorinated Graphene Oxide Layer Spacing on the Thermal and Mechanical Properties of Fluorinated Epoxy Resin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1344. [PMID: 34065258 PMCID: PMC8160737 DOI: 10.3390/nano11051344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
Traditional epoxy resin (EP) materials have difficulty to meet the performance requirements in the increasingly complex operating environment of the electrical and electronic industry. Therefore, it is necessary to study the design and development of new epoxy composites. At present, fluorinated epoxy resin (F-EP) is widely used, but its thermal and mechanical properties cannot meet the demand. In this paper, fluorinated epoxy resin was modified by ordered filling of fluorinated graphene oxide (FGO). The effect of FGO interlayer spacing on the thermal and mechanical properties of the composite was studied by molecular dynamics (MD) simulation. It is found that FGO with ordered filling can significantly improve the thermal and mechanical properties of F-EP, and the modification effect is better than that of FGO with disordered filling. When the interlayer spacing of FGO is about 9 Å, the elastic modulus, glass transition temperature, thermal expansion coefficient, and thermal conductivity of FGO are improved with best effect. Furthermore, we calculated the micro parameters of different systems, and analyzed the influencing mechanism of ordered filling and FGO layer spacing on the properties of F-EP. It is considered that FGO can bind the F-EP molecules on both sides of the nanosheets, reducing the movement ability of the molecular segments of the materials, so as to achieve the enhancement effect. The results can provide new ideas for the development of high-performance epoxy nanocomposites.
Collapse
Affiliation(s)
- Qijun Duan
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Jun Xie
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Guowei Xia
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Chaoxuan Xiao
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Xinyu Yang
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Qing Xie
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
8
|
Gao Y, Xu D, Cui T, Li D. Stability of hydrogen-terminated graphene edges. Phys Chem Chem Phys 2021; 23:13261-13266. [PMID: 34095922 DOI: 10.1039/d1cp01384j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogen passivation is an important method used to stabilize a specific graphene edge. Although several hydrogen-terminated graphene edges have been proposed in theory, a comprehensive exploration of highly stable hydrogen-terminated graphene edges is still absent. According to the bare graphene-edge databases, a series of hydrogen-terminated graphene edges have been proposed. The energy stability of hydrogen-terminated zigzag and armchair graphene edges is fully investigated. The six most stable hydrogen-terminated zigzag edges and six armchair edges of graphene are determined. Hydrogen passivation makes hydrogen-terminated graphene edges energetically more stable than bare graphene edges. The additional hydrogen atoms balance the dangling bonds of carbon atoms at edges by forming hydrogen-carbon covalent bonds. Hydrogen-terminated graphene edges with six-membered carbon rings have better global stability than those composed of non-hexagonal structural units. The effects of the experimental temperatures and hydrogen partial pressures on the stability of hydrogen-terminated graphene edges are fully investigated. Furthermore, hydrogen passivation can open the band gap of graphene effectively. These results provide a deep understanding of hydrogen-terminated graphene nanostructures.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Dan Xu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China. and School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Da Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|