1
|
Sterle Zorec B. Two-dimensional printing of nanoparticles as a promising therapeutic method for personalized drug administration. Pharm Dev Technol 2023; 28:826-842. [PMID: 37788221 DOI: 10.1080/10837450.2023.2264920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The necessity for personalized patient treatment has drastically increased since the contribution of genes to the differences in physiological and metabolic state of individuals have been exposed. Different approaches have been considered so far in order to satisfy all of the diversities in patient needs, yet none of them have been fully implemented thus far. In this framework, various types of 2D printing technologies have been identified to offer some potential solutions for personalized medication, which development is increasing rapidly. Accurate drug-on-demand deposition, the possibility of consuming multiple drug substances in one product and adjusting individual drug concentration are just some of the few benefits over existing bulk pharmaceuticals manufacture, which printing technologies brings. With inclusion of nanotechnology by printing nanoparticles from its dispersions some further opportunities such as controlled and stimuli-responsive drug release or targeted and dose depending on drug delivery were highlighted. Yet, there are still some challenges to be solved before such products can reach the pharmaceutical market. In those terms mostly chemical, physical as well as microbiological stability concerns should be answered, with which 2D printing technology could meet the treatment needs of every individual and fulfill some existing drawbacks of large-scale batch production of pharmaceuticals we possess today.
Collapse
Affiliation(s)
- Barbara Sterle Zorec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
DeMarco M, Ballard M, Grage E, Nourigheimasi F, Getter L, Shafiee A, Ghadiri E. Enhanced photochemical activity and ultrafast photocarrier dynamics in sustainable synthetic melanin nanoparticle-based donor-acceptor inkjet-printed molecular junctions. NANOSCALE 2023; 15:14346-14364. [PMID: 37602764 DOI: 10.1039/d3nr02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Melanin is a stable, widely light-absorbing, photoactive, and biocompatible material viable for energy conversion, photocatalysis, and bioelectronic applications. To achieve multifunctional nanostructures, we synthesized melanin nanoparticles of uniform size and controlled chemical composition (dopamelanin and eumelanin) and used them with titanium dioxide to fabricate donor-acceptor bilayers. Their size enhances the surface-to-volume ratio important for any surface-mediated functionality, such as photocatalysis, sensing, and drug loading and release, while controlling their chemical composition enables to control the film's functionality and reproducibility. Inkjet printing uniquely allowed us to control the deposited amount of materials with minimum ink waste suitable for reproducible materials deposition. We studied the photochemical characteristics of the donor-acceptor melanin-TiO2 nanostructured films via photocatalytic degradation of methylene blue dye under selective UV-NIR and Vis-NIR irradiation conditions. Under both irradiation conditions, they exhibited photocatalytic characteristics superior to pure melanin and, under UV-NIR irradiation, superior to TiO2 alone; TiO2 is photoactive only under UV irradiation. The enhanced photocatalytic characteristics of the melanin-TiO2 nanostructured bilayer films, particularly when excited by visible light, point to charge separation at the melanin-TiO2 interface as a possible mechanism. We performed ultrafast laser spectroscopy to investigate the photochemical characteristics of pure melanin and the melanin-TiO2 constructs and found that their time-resolved photoexcited spectral patterns differ. We performed singular value decomposition analysis to quantitatively deconvolute and compare the dynamics of photochemical processes for melanin and melanin-TiO2 heterostructures. This observation supports electronic interactions, namely, interfacial charge separation at the melanin and TiO2 interface. The excited-state relaxation in melanin-TiO2 increases markedly from 5 ps to 400 ps. The results are remarkable for the future intriguing application of melanin-based constructs for bioelectronics and energy conversion.
Collapse
Affiliation(s)
- Max DeMarco
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Matthew Ballard
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Elinor Grage
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Farnoush Nourigheimasi
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Lillian Getter
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Ashkan Shafiee
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| | - Elham Ghadiri
- Chemistry Department, Wake Forest University, USA.
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| |
Collapse
|
3
|
Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Repair Effect on Myocardial Infarction. Macromol Biosci 2022; 22:e2200223. [PMID: 36116010 DOI: 10.1002/mabi.202200223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Heart failure caused by acute myocardial infarction (MI) still remains the main cause of death worldwide. Development of conductive hydrogels provided a promising approach for the treatment of myocardial infarction. However, the therapeutic potential of these hydrogels is still limited by material toxicity or low conductivity. The latter directly affects the coupling and the propagation of electrical signals between cells. Here, a functional conductive hydrogel by combining hydrophilic and biocompatible poly(vinyl alcohol) (PVA) with conductive melanin nanoparticles under physical crosslinking conditions is prepared. The composite hydrogels prepared by a facile fabrication process of five freeze/thaw cycles possessed satisfying mechanical properties and conductivity close to those of the natural heart. The physical properties and biocompatibility are evaluated in vitro experiments, showing that the introduction of melanin particles successfully improved the elasticity, conductivity, and cell adhesion of PVA hydrogel. In vivo, the composite hydrogels can enhance the cardiac repair effect by reducing MI area, slowing down ventricular wall thinning, and promoting the vascularization of infarct area in MI rat model. It is believed that the melanin/PVA composite hydrogel may be a suitable candidate material for MI repair.
Collapse
Affiliation(s)
- Haien Guan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Dan Liu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiamian Zhan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China
| | - Xiaofang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Kim NW, Lee DG, Kim KS, Hur S. Effects of Curing Temperature on Bending Durability of Inkjet-Printed Flexible Silver Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2463. [PMID: 33317076 PMCID: PMC7763182 DOI: 10.3390/nano10122463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Flexible electrodes should have a good mechanical durability and electrical properties under even extreme bending and deformation conditions. We fabricated such an electrode using an inkjet printing system. In addition, annealing was perfo3rmed under curing temperatures of 150, 170, and 190 °C to improve the electrical resistance performance of the electrode. Scanning electron microscopy, X-ray diffraction, nanoindentation, and surface profile measurements were performed to measure and analyze the electrode characteristics and the change in the shape of the coffee ring. The bending deformation behavior of the electrode was predicted by simulations. To confirm the bending durability of the flexible electrode according to different curing temperatures, the bending deformation and electrical resistance were simultaneously tested. It was found that the electrode cured at a temperature of 170 °C could endure 20,185 bending cycles and had the best durability, which was consistent with the predicted simulation results. Moreover, the average specific resistance before the electrode was disconnected was 13.45 μΩ cm, which is similar to the conventional electrode value. These results are expected to increase the durability and life of flexible electrodes, which can be used in flexible electronic devices, sensors, and wearable devices that are subjected to significant bending deformation.
Collapse
Affiliation(s)
- Nam Woon Kim
- Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (D.-G.L.); (K.-S.K.)
| | - Duck-Gyu Lee
- Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (D.-G.L.); (K.-S.K.)
| | - Kyung-Shik Kim
- Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (D.-G.L.); (K.-S.K.)
| | - Shin Hur
- Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (D.-G.L.); (K.-S.K.)
- Department of Nano-Mechatronics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|