1
|
Hao S, Xue Y, Peng C, Mi Y, Yan Y, Wang M, Han Q, Zheng G. Photocatalytic CH 4-to-Ethanol Conversion on Asymmetric Multishelled Interfaces. J Am Chem Soc 2024; 146:25870-25877. [PMID: 39231938 DOI: 10.1021/jacs.4c08801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The selective oxidation of methane (CH4) features attractive potentials in both mitigating global warming and producing value-added chemicals. However, due to the short-life and unpaired concentrations of reactive intermediates (such as ·OH, ·CH3, and CO), the selective formation of multicarbon products like ethanol has remained challenging. In this work, we developed a hollow multishelled CeO2@PdO@FeOx nanosphere catalyst with two asymmetric and closely connected interfaces, featuring efficient in-tandem photo-oxidation of CH4 into ethanol with O2 as the oxidant. The outer FeOx surface promotes the photoreduction of the oxazole atoms in O2. In the meantime, the two asymmetric PdO/FeOx and CeO2/PdO catalytic interfaces enable selective photoactivation of CH4 to ·CH3 and then to CO, respectively, and the hollow multishelled structure further facilitates the directional transport and coupling of the as-generated ·CH3 and CO to produce ethanol. Under 100 mW·cm-2 light intensity and ambient conditions, the hollow multishelled CeO2@PdO@FeOx nanosphere photocatalyst exhibited a peak CH4-to-ethanol yield of 728 μmol·g-1·h-1 without photosensitizers or sacrificial agents, almost three times higher than the previous best reports on photocatalytic CH4 oxidation to ethanol, suggesting the attractive potential of the asymmetric multishelled catalytic interfaces.
Collapse
Affiliation(s)
- Shuya Hao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yuanyuan Xue
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yuying Mi
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Maoyin Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Tehreem R, Awais M, Khursheed S, Rehman F, Hussain D, Mok YS, Siddiqui GU. Synthesis of efficient light harvesting Cr, N Co-doped TiO 2 nanoparticles for enhanced visible light photocatalytic degradation of xanthene dyes; eosin yellow and rose bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92621-92635. [PMID: 37493906 DOI: 10.1007/s11356-023-28701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
To solve the problem of water pollution, using environment friendly and cost effective method in short time is the need of hour. In this work, chromium (Cr) and nitrogen (N) co-doped TiO2 nanoparticles were synthesized and were used for the photocatalytic degradation of dyes under visible light. The synergistic effect of metal and non-metal co-dopants added would result in appropriate reduction of band gap {from 3.2 eV of TiO2 to 2.67 eV}, decrease in recombination rate of charge carriers by trapping electrons and holes, and in better light harvesting capacity. Nanoparticles were synthesized by sol-gel method and characterized using ultraviolet-visible (UV-VIS) spectroscopy, fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), zeta potential, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, field emission scanning electron microscopy (FE-SEM), and RAMAN spectroscopy. Eosin yellow (EY) and rose bengal (RB) were subjected to photocatalytic degradation under solar light to check the photocatalytic activity of the synthesized nanoparticles. Effects of dye concentration, the concentration of nanoparticles, time, and pH were investigated to optimize the parameters. The results obtained were remarkable for 20 ppm EY solution took 10 min using 1 gL-1 NPs at pH 3 and 10 ppm RB solution took 5 min using 0.75 gL-1 NPs at pH 5.78 (original pH) for complete degradation. Kinetics studies were also performed and both dyes followed pseudo-second-order kinetics with R2 values 0.99312 and 0.99712 for EY and RB, respectively. The study of degraded products was conducted using high-performance liquid chromatography (HPLC) hyphenated with electron spray ionization mass spectroscopy (ESI-MS) (LC-MS) and possible degradation pathways were made for both dyes. A reusability test was also performed showing the efficiency of the particles was up to 88% after 3 cycles of use. These notable results can be attributed to the efficient removal of organic pollutants using the proposed dopants in this study.
Collapse
Affiliation(s)
- Rida Tehreem
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Awais
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sanya Khursheed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Fahad Rehman
- Biorefinery Engineering and Microfluidics (BEAM) Lab, Microfluidics Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Young Sun Mok
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ghayas Uddin Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Ai X, Yan S, Lin C, Lu K, Chen Y, Ma L. Facile Fabrication of Highly Active CeO 2@ZnO Nanoheterojunction Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1371. [PMID: 37110956 PMCID: PMC10143434 DOI: 10.3390/nano13081371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Photocatalyst performance is often limited by the poor separation and rapid recombination of photoinduced charge carriers. A nanoheterojunction structure can facilitate the separation of charge carrier, increase their lifetime, and induce photocatalytic activity. In this study, CeO2@ZnO nanocomposites were produced by pyrolyzing Ce@Zn metal-organic frameworks prepared from cerium and zinc nitrate precursors. The effects of the Zn:Ce ratio on the microstructure, morphology, and optical properties of the nanocomposites were studied. In addition, the photocatalytic activity of the nanocomposites under light irradiation was assessed using rhodamine B as a model pollutant, and a mechanism for photodegradation was proposed. With the increase in the Zn:Ce ratio, the particle size decreased, and surface area increased. Furthermore, transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed the formation of a heterojunction interface, which enhanced photocarrier separation. The prepared photocatalysts show a higher photocatalytic activity than CeO2@ZnO nanocomposites previously reported in the literature. The proposed synthetic method is simple and may produce highly active photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Xiaoqian Ai
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Shun Yan
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Chao Lin
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Kehong Lu
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Yujie Chen
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Ligang Ma
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
4
|
Cabello-Guzmán G, Seguel M, Fernández L, Caro C, Suarez C, Matus M, Cifuentes C, Bustos F, Ariz K. A photochemical approach to the synthesis of ZnO/CuO films and their application to the photocatalytic degradation of rhodamines (Rh-B and Rh-6G) under UV-Vis light irradiation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Murugesan S, Sasibabu V, Jegadeesan GB, Venkatachalam P. Photocatalytic degradation of Reactive Black dye using ZnO-CeO 2 nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42713-42727. [PMID: 35978239 DOI: 10.1007/s11356-022-22560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study presents the photocatalytic efficiency of ZnO-CeO2 nanocomposites for the degradation of a model Reactive Black (RB) dye. Nano-CeO2 was synthesized using cerium nitrate precursor solution via chemical precipitation. Synthesized nano-CeO2 was mixed with ZnO nanoparticles in different mass ratios to obtain ZnO-CeO2 heterojunction photocatalyst. The morphology of the nanocomposites was examined using transmission electron microscope (TEM). X-ray diffraction patterns of the CeO2 corresponded well with (1 1 1) plane of cubic-phase CeO2. The band gap of the ZnO-CeO2 nanocatalyst synthesized was determined to be 3.08 eV, which was lower than that of the pristine CeO2 and ZnO powders, respectively. The results indicate that 1:1 wt. ratio ZnO-CeO2 nanocomposite provides about 85% RB degradation within 90 min under UV light under alkaline pH conditions. Degradation rate of RB dye achieved with ZnO-CeO2 nanocomposite was almost 1.5 times greater than that obtained with pristine ZnO. Increasing CeO2 ratio beyond 1:1 wt. ratio did not significantly increase RB degradation. The results demonstrate that addition of CeO2 to ZnO results in lowering its band gap energy and aids charge carrier separation resulting in enhanced oxidation of RB dye under UV light.
Collapse
Affiliation(s)
- Saravanan Murugesan
- Bioprocess Intensification Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Vigneshwar Sasibabu
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Gautham B Jegadeesan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Ponnusami Venkatachalam
- Bioprocess Intensification Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| |
Collapse
|
6
|
Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Cáceres-Hernández A, Torres-Torres JG, Silahua-Pavón A, Godavarthi S, García-Zaleta D, Saavedra-Díaz RO, Tavares-Figueiredo R, Cervantes-Uribe A. Facile Synthesis of ZnO-CeO 2 Heterojunction by Mixture Design and Its Application in Triclosan Degradation: Effect of Urea. NANOMATERIALS 2022; 12:nano12121969. [PMID: 35745314 PMCID: PMC9230812 DOI: 10.3390/nano12121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
In this study, simplex centroid mixture design was employed to determine the effect of urea on ZnO-CeO. The heterojunction materials were synthesized using a solid-state combustion method, and the physicochemical properties were evaluated using X-ray diffraction, nitrogen adsorption/desorption, and UV–Vis spectroscopy. Photocatalytic activity was determined by a triclosan degradation reaction under UV irradiation. According to the results, the crystal size of zinc oxide decreases in the presence of urea, whereas a reverse effect was observed for cerium oxide. A similar trend was observed for ternary samples, i.e., the higher the proportion of urea, the larger the crystallite cerium size. In brief, urea facilitated the co-existence of crystallites of CeO and ZnO. On the other hand, UV spectra indicate that urea shifts the absorption edge to a longer wavelength. Studies of the photocatalytic activity of TCS degradation show that the increase in the proportion of urea favorably influenced the percentage of mineralization.
Collapse
Affiliation(s)
- Antonia Cáceres-Hernández
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Jose Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Adib Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por México—División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86690, TB, Mexico;
| | - David García-Zaleta
- División Académica Multidisciplinaria de Jalpa de Méndez, Carretera Cunduacán–Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, km 1, Col. La Esmeralda, Villahermosa 86690, TB, Mexico;
| | - Rafael Omar Saavedra-Díaz
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | | | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
- Correspondence: ; Tel.: +52-553-143-9893
| |
Collapse
|
8
|
Pandey PH, Pawar HS. Mingled Metal Oxides Catalyst for Direct Carbonylation of Glycerol into Glycerol Carbonate. ChemistrySelect 2022. [DOI: 10.1002/slct.202104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Preeti H. Pandey
- DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology, Matunga Mumbai 400 019 India
| | - Hitesh S. Pawar
- DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology, Matunga Mumbai 400 019 India
| |
Collapse
|
9
|
Hezam A, Drmosh QA, Ponnamma D, Bajiri MA, Qamar M, Namratha K, Zare M, Nayan MB, Onaizi SA, Byrappa K. Strategies to Enhance ZnO Photocatalyst's Performance for Water Treatment: A Comprehensive Review. CHEM REC 2022; 22:e202100299. [PMID: 35119182 DOI: 10.1002/tcr.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Indexed: 01/05/2023]
Abstract
Despite the photocatalytic organic pollutant degradation using ZnO started in 1910-1911, many challenges are still ahead, and several critical issues have to be addressed. Large band gap, and short life-time of photogenerated electrons and holes are critical issues negatively affect the photocatalytic activity of ZnO. Various approaches have been introduced to overcome these issues including intrinsic doping, extrinsic doping, and heterostructure. This review introduces unique and deep insights into tuning of the photocatalytic activity of ZnO. It starts by description of how to tune the photocatalytic activity of pristine ZnO through tuning its morphology, surface area, exposed face, and intrinsic defects. Afterward, the review explains how the Z-scheme approach succeed to address the redox weakened issue of heterojunction approach. In general, this review provides a clear image that helps the researcher to tune the photocatalytic activity of pristine ZnO and its heterostructure.
Collapse
Affiliation(s)
- Abdo Hezam
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India.,Leibniz-Institute for Catalysis at the University of Rostock, 18059, Rostock, Germany
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | | | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, 577 451, Shankaraghatta, India
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - K Namratha
- DOS in Earth Science, University of Mysore, Mysuru, 570 006, India
| | - Mina Zare
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - M B Nayan
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - Sagheer A Onaizi
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31216, Dhahran, Saudi Arabia
| | - K Byrappa
- Adichunchanagiri University, N.H.75, 571448, B. G. Nagara, Mandya District, India
| |
Collapse
|
10
|
Singh J, Soni R. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Luo K, Hu W, Wei J, Zhang Q, Wu Z, Li D, Miao F, Huang Y, Xu M, Ma J, Li C, Chen G, Han R, Wang X, Cui X, Ruterana P. Exploration of irradiation intensity dependent external in-band quantum yield for ZnO and CuO/ZnO photocatalysts. Phys Chem Chem Phys 2021; 23:10768-10779. [PMID: 33978645 DOI: 10.1039/d0cp06649d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Decorating metal oxides with wide band-gap semiconductor nano-particles constitute an important approach for synthesizing nano-photocatalysts, where the photocatalytic activity is attributed to the band diagram related effective charge separation and external in-band quantum yield (EIQY). However, up to now, the correlation between the irradiation intensity and the functionalization of the in-band quantum yield has not yet been explained. In this work, by investigating the photocatalytic activity of ZnO and CuO/ZnO (CZO) nano-photocatalysts under various irradiative intensities, we show that the effective charge separation in the CuO/ZnO band alignment is sensitive to weak illumination, while ZnO exhibits a competitive photocatalytic activity with CZO under strong illumination. As a consequence, by modifying the irradiation intensity, the intrinsic ZnO can achieve a similar photocatalytic activity to that of metal oxide decorated ZnO. Besides, the optimal photocatalytic activity of CZO is found to be reachable by manipulating the pollutant concentration.
Collapse
Affiliation(s)
- Kaiyi Luo
- College of Electrical Engineering, Southwest Minzu University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/6629180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, nanoparticles synthesis by green synthesis has gained extensive attention as a facile, inexpensive, and environmentally friendly method compared with chemical and physical synthesis methods. This review covered the biosynthesis of zinc oxide nanoparticles (ZnO NPs), including the procedure and mechanism. Factors affecting the formation of ZnO NPs are discussed. The presence of active bioorganic molecules in plant extract played a vital role in the formation of ZnO NPs as a natural green medium in the metallic ion reduction processes. ZnO NPs exhibit attractive photocatalysis properties due to electrochemical stability, high electron mobility, and large surface area. In this review, the procedure and mechanism of the ZnO photocatalysis process are studied. The effects of dyes amount, catalysts, and light on photodegradation efficiency are also considered. This review provides useful information for researchers who are dealing with green synthesis of ZnO NPs. Moreover, it can provide investigators with different perceptions towards the efficiency of biosynthesized ZnO NPs on dyes degradation and its restrictions.
Collapse
|
13
|
Graphene Oxide Coated Zinc Oxide Core–Shell Nanofibers for Enhanced Photocatalytic Performance and Durability. COATINGS 2020. [DOI: 10.3390/coatings10121183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, heterogeneous structured semiconductor photocatalysts have received significant interest in promoting global cleaning from the environmental pollution. Herein, we report the synthesis of graphene oxide (GO) wrapped zinc oxide (ZnO) core–shell nanofibers (ZnO@G CSNFs) by the simple core–shell electrospinning and subsequent annealing for efficient photocatalytic performance and stability. The heterostructured catalyst consisted of ZnO forming an enclosed core part while the GO was positioned on the surface, serving as a protective shell. Field emission scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction were used to confirm the synthesis of the desired product. Enhanced photocatalytic activity ZnO@G CSNFs was found compared to the corresponding ZnO NFs. Similarly, incorporation of GO into the ZnO nanofiber in a core–shell format significantly suppressed the photocorrosion. This study highlights the usefulness of using GO as the coating material to boost the photocatalytic performance of ZnO-based photocatalysts.
Collapse
|