1
|
He X, Tian Y, Dong J, Yuan Y, Zhang S, Jing H. RNA-Seq Reveals the Mechanism of Pyroptosis Induced by Oxygen-Enriched IR780 Nanobubbles-Mediated Sono-Photodynamic Therapy. Int J Nanomedicine 2024; 19:13029-13045. [PMID: 39654803 PMCID: PMC11625641 DOI: 10.2147/ijn.s487412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Background Sono-photodynamic therapy (SPDT), the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), is a promising tumor treatment method. However, the hypoxic tumor microenvironment greatly compromises the efficacy of SPDT. Pyroptosis, a new type of programmed cell death, is mainly induced by some chemotherapeutic drugs in the current research, and rarely by SPDT. RNA sequencing (RNA-seq) is a high-throughput sequencing technique that comprehensively profiles the transcriptome, revealing the full spectrum of RNA molecules in a cell. Here, we constructed IR780@O2 nanobubbles (NBs) with photoacoustic dual response and hypoxia improvement properties to fight triple negative breast cancer (TNBC), and demonstrated that SPDT could kill TNBC cells through pyroptosis pathway. RNA-seq further revealed potential mechanisms and related differentially expressed genes. Methods Thin-film hydration and mechanical vibration method were utilized to synthesize IR780@O2 NBs. Subsequently, we characterized IR780@O2 NBs and examined the cytotoxicity as well as ROS production ability. A series of experiments were conducted to verify that SPDT killed TNBC cells through pyroptosis. Results IR780@O2 NBs were successfully prepared and had certain stability. Compared with SDT alone, SPDT increased therapeutic effect by 1.67 times by generating more ROS, and the introduction of NBs and O2 NBs (2.23 times and 2.93 times compared with SDT alone) could further promote this process. Other experiments proved that TNBC cells died by pyroptosis pathway. Moreover, the in-depth mechanism revealed that colony stimulating factor (CSF) and C-X-C motif chemokine ligand (CXCL) could be potential targets for the occurrence of pyroptosis in TNBC cells. Conclusion The IR780@O2 NBs prepared in this study increased the degree of TNBC cell pyroptosis through SPDT effect and alleviation of hypoxia, and cellular senescence might be a biological process closely related to pyroptosis in TNBC.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jialin Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shijie Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, Gholami A, Chiang WH. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B 2024; 12:7041-7062. [PMID: 38946657 DOI: 10.1039/d4tb00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Water-soluble graphene quantum dots (GQDs) have recently exhibited considerable potential for diverse biomedical applications owing to their exceptional optical and chemical properties. However, the pronounced heterogeneity in the composition, size, and morphology of GQDs poses challenges for a comprehensive understanding of the intricate correlation between their structural attributes and functional properties. This variability also introduces complexities in scaling the production processes and addressing safety considerations. Light and sound have firmly established their role in clinical applications as pivotal energy sources for minimally invasive therapeutic interventions. Given the limited penetration depth of light, photodynamic therapy (PDT) predominantly targets superficial conditions such as dermatological disorders, head and neck malignancies, ocular ailments, and early-stage esophageal cancer. Conversely, ultrasound-based sonodynamic therapy (SDT) capitalizes on its superior ability to propagate and focus ultrasound within biological tissues, enabling a diverse range of therapeutic applications, including the management of gliomas, breast cancer, hematological tumors, and modulation of the blood-brain barrier (BBB). Considering the advancements in theranostic and precision therapies, reevaluating these conventional energy sources and their associated sensitizers is imperative. This review introduces three prevalent treatment modalities that harness light and sound stimuli: PDT, SDT, and a synergistic approach that integrates PDT and SDT. This study delineated the therapeutic dynamics and contemporary designs of sensitizers tailored to these modalities. By exploring the historical context of the field and elucidating the latest design strategies, this review underscores the pivotal role of GQDs in propelling the evolution of PDT and SDT. This aspires to stimulate researchers to develop "multimodal" therapies integrating both light and sound stimuli.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, Quebec, J2C 0R5, Canada.
- Centre national intégré du manufacturier intelligent (CNIMI), Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
3
|
Zhu Y, Arkin G, He T, Guo F, Zhang L, Wu Y, Prasad PN, Xie Z. Ultrasound imaging guided targeted sonodynamic therapy enhanced by magnetophoretically controlled magnetic microbubbles. Int J Pharm 2024; 655:124015. [PMID: 38527565 DOI: 10.1016/j.ijpharm.2024.124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, PR China; Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Gulzira Arkin
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Tianzhen He
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Fengjuan Guo
- Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, PR China
| | - Ling Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, Guangdong, PR China.
| |
Collapse
|
4
|
Liang Y, Zhang M, Zhang Y, Zhang M. Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation. Molecules 2023; 28:6484. [PMID: 37764260 PMCID: PMC10537038 DOI: 10.3390/molecules28186484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
With the rapid development of sonodynamic therapy (SDT), sonosensitizers have evolved from traditional treatments to comprehensive diagnostics and therapies. Sonosensitizers play a crucial role in the integration of ultrasound imaging (USI), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) diagnostics while also playing a therapeutic role. This review was based on recent articles on multifunctional sonosensitizers that were used in SDT for the treatment of cancer and have the potential for clinical USI, CT, and MRI applications. Next, some of the shortcomings of the clinical examination and the results of sonosensitizers in animal imaging were described. Finally, this paper attempted to inform the future development of sonosensitizers in the field of integrative diagnostics and therapeutics and to point out current problems and prospects for their application.
Collapse
Affiliation(s)
- Yunlong Liang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| |
Collapse
|
5
|
Du C, Wang C, Jiang SH, Zheng X, Li Z, Yao Y, Ding Y, Chen T, Yi H. pH/GSH dual-responsive supramolecular nanomedicine for hypoxia-activated combination therapy. Biomater Sci 2023; 11:5674-5679. [PMID: 37439102 DOI: 10.1039/d3bm00519d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).
Collapse
Affiliation(s)
- Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangqin Zheng
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Zelong Li
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Huan Yi
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
6
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5193-5203. [PMID: 37621595 PMCID: PMC10445077 DOI: 10.12998/wjcc.v11.i22.5193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
7
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5187-5197. [DOI: 10.12998/wjcc.v11.i22.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
8
|
Wang L, Tian Y, Lai K, Liu Y, Liu Y, Mou J, Yang S, Wu H. An Ultrasound-Triggered Nanoplatform for Synergistic Sonodynamic-Nitric Oxide Therapy. ACS Biomater Sci Eng 2023; 9:797-808. [PMID: 36662809 DOI: 10.1021/acsbiomaterials.2c01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) has aroused intensive interest as a powerful alternative for cancer treatment in recent years due to its non-invasiveness and deep tissue penetration. However, the therapeutic effect of SDT alone is still limited by intrinsic hypoxia in solid tumors. Combined synergistic therapy strategies are highly desired for improving therapeutic efficiency. Herein, a rationally designed intelligent theranostic nanoplatform is developed for the enhancement of cancer treatment through synergistic SDT and nitric oxide (NO) therapy. This US-triggered nanoplatform is fabricated by integrating a sonosensitizer Rose Bengal (RB) and a NO donor (SNO) into manganese-doped hollow mesoporous silica nanoparticles (MH-SNO@RB). Impressively, the acidic and reducing tumor microenvironment accelerates the sustainable release of Mn ions from the framework, which facilitates the MH-SNO@RB to be used as a contrast agent for magnetic resonance imaging. More importantly, the reactive oxygen species (ROS) generated by RB and NO molecules released from SNO, which are simultaneously triggered by US, can react with each other to yield highly reactive peroxynitrite (ONOO-) ions for effective tumor inhibition both in vitro and in vivo. Furthermore, the nanoplatform demonstrates good hemocompatibility and histocompatibility. This study opens a new strategy for the full utilization of US and intelligent design avenues for high-performance cancer treatment.
Collapse
Affiliation(s)
- Likai Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Ya Tian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Kexin Lai
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Yan Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Yeping Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Juan Mou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Huixia Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| |
Collapse
|
9
|
Liao S, Cai M, Zhu R, Fu T, Du Y, Kong J, Zhang Y, Qu C, Dong X, Ni J, Yin X. Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin e6 and Other Applications. Mol Pharm 2023; 20:875-885. [PMID: 36689197 DOI: 10.1021/acs.molpharmaceut.2c00824] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.
Collapse
Affiliation(s)
- Shilang Liao
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqiang Zhang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | | |
Collapse
|
10
|
Chen Q, Zhang M, Huang H, Dong C, Dai X, Feng G, Lin L, Sun D, Yang D, Xie L, Chen Y, Guo J, Jing X. Single Atom-Doped Nanosonosensitizers for Mutually Optimized Sono/Chemo-Nanodynamic Therapy of Triple Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206244. [PMID: 36646509 PMCID: PMC9951334 DOI: 10.1002/advs.202206244] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Indexed: 05/19/2023]
Abstract
Sonodynamic therapy (SDT) represents a promising therapeutic modality for treating breast cancer, which relies on the generation of abundant reactive oxygen species (ROS) to induce oxidative stress damage. However, mutant breast cancers, especially triple-negative breast cancer (TNBC), have evolved to acquire specific antioxidant defense functions, significantly limiting the killing efficiency of SDT. Herein, the authors have engineered a distinct single copper atom-doped titanium dioxide (Cu/TiO2 ) nanosonosensitizer with highly catalytic and sonosensitive activities for synergistic chemodynamic and sonodynamic treatment of TNBC. The single-atom Cu is anchored on the most stable Ti vacancies of hollow TiO2 sonosensitizers, which not only substantially improved the catalytic activity of Cu-mediated Fenton-like reaction, but also considerably augmented the sonodynamic efficiency of TiO2 by facilitating the separation of electrons (e- ) and holes (h+ ). Both the in vitro and in vivo studies demonstrate that the engineered single atom-doped nanosonosensitizers effectively achieved the significantly inhibitory effect of TNBC, providing a therapeutic paradigm for non-invasive and safe tumor elimination through the mutual process of sono/chemo-nanodynamic therapy based on multifunctional single-atom nanosonosensitizers.
Collapse
Affiliation(s)
- Qiqing Chen
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Min Zhang
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Caihong Dong
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Xinyue Dai
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Guiying Feng
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Ling Lin
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Dandan Sun
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Dayan Yang
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Lin Xie
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203P. R. China
| | - Xiangxiang Jing
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311P. R. China
| |
Collapse
|
11
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Li C, Zhou Z, Ren C, Deng Y, Peng F, Wang Q, Zhang H, Jiang Y. Triplex-forming oligonucleotides as an anti-gene technique for cancer therapy. Front Pharmacol 2022; 13:1007723. [PMID: 36618947 PMCID: PMC9811266 DOI: 10.3389/fphar.2022.1007723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of double-stranded DNA with high specificity and affinity and inhibit gene expression. Triplex-forming oligonucleotides have gained prominence because of their potential applications in antigene therapy. In particular, the target specificity of triplex-forming oligonucleotides combined with their ability to suppress oncogene expression has driven their development as anti-cancer agents. So far, triplex-forming oligonucleotides have not been used for clinical treatment and seem to be gradually snubbed in recent years. But triplex-forming oligonucleotides still represent an approach to down-regulate the expression of the target gene and a carrier of active substances. Therefore, in the present review, we will introduce the characteristics of triplex-forming oligonucleotides and their anti-cancer research progress. Then, we will discuss the challenges in their application.
Collapse
Affiliation(s)
- Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zunzhen Zhou
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Peng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qiongfen Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| |
Collapse
|
13
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
14
|
Nanoemulsion applications in photodynamic therapy. J Control Release 2022; 351:164-173. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Nanoemulsion, or nanoscaled-size emulsions, is a thermodynamically stable system formed by blending two immiscible liquids, blended with an emulsifying agent to produce a single phase. Nanoemulsion science has advanced rapidly in recent years, and it has opened up new opportunities in a variety of fields, including pharmaceuticals, biotechnology, food, and cosmetics. Nanoemulsion has been recognized as a potential drug delivery technology for various drugs, such as photosensitizing agents (PS). In photodynamic therapy (PDT), PSs produce cytotoxic reactive oxygen species under specific light irradiation, which oxidize the surrounding tissues. Over the past decades, the idea of PS-loaded nanoemulsions has received researchers' attention due to their ability to overcome several limitations of common PSs, such as limited permeability, non-specific phototoxicity, hydrophobicity, low bioavailability, and self-aggregation tendency. This review aims to provide fundamental knowledge of nanoemulsion formulations and the principles of PDT. It also discusses nanoemulsion-based PDT strategies and examines nanoemulsion advantages for PDT, highlighting future possibilities for nanoemulsion use.
Collapse
|
15
|
Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022; 12:22722-22747. [PMID: 36105955 PMCID: PMC9376763 DOI: 10.1039/d2ra03786f] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment for cancer combining low-intensity ultrasound and sonosensitizers. SDT activates sonosensitizers through ultrasound, releasing energy and generating reactive oxygen species to kill tumor cells. Compared with traditional photodynamic therapy (PDT), SDT is a promising anti-cancer therapy with the advantages of better targeting, deeper tissue penetration, and higher focusing ability. With the development and broad application of nanomaterials, novel sonosensitizers with tumor-targeting specificity can deliver to deep tumors and enhance the tumor microenvironment. In this review, we first review the mechanisms of sonodynamic therapy. In addition, we also focus on the current types of sonosensitizers and the latest design strategies of nanomaterials in sonosensitizers. Finally, we summarize the combined strategy of sonodynamic therapy.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| |
Collapse
|
16
|
Du W, Chen W, Wang J, Cheng L, Wang J, Zhang H, Song L, Hu Y, Ma X. Oxygen-deficient titanium dioxide-loaded black phosphorus nanosheets for synergistic photothermal and sonodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 136:212794. [PMID: 35929333 DOI: 10.1016/j.bioadv.2022.212794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Malignant tumors, particularly those located in deep tissues, have always been a grievous threat to human health. Sonodynamic therapy (SDT) has recently attracted great attention due to deep tissue penetration. However, the lack of effective sonosensitizers and the poor therapeutic efficacy severely limit their wider use. Herein, dual-functionalized black phosphorus nanosheets (BP@PEI-PEG, i.e., PPBP) integrating black oxygen-deficient titanium dioxide particles (B-TiO2) were successfully constructed (PPBP-B-TiO2) for synergistic photothermal (PTT)/sonodynamic therapy. In these nanocomposites, black titanium dioxide can enhance the separation of electrons (e-) and holes (h+) due to the oxygen-deficient structure and significantly improves the production of reactive oxygen species (ROS) for SDT, while the BP nanosheets endow the nanocomposites with a higher photothermal conversion capability for photothermal therapy (η = 44.1%) which can prolong the blood circulation and improve the O2 supply. In vivo experiments prove that PPBP-B-TiO2 nanocomposites exhibited outstanding tumor inhibition efficacy and excellent biocompatibility. This work provides a prospective platform for combined photothermal/sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Jing Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, PR China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China.
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, PR China; Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| |
Collapse
|
17
|
Hematoporphyrin Is a Promising Sensitizer for Dual-Frequency Sono-photodynamic Therapy in Mice Breast Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The combination of sonodynamic and photodynamic therapy (SPDT) may be a new hopeful non-invasive method for cancer treatment, which incorporates a combination of low-intensity ultrasound, laser radiation, and a sensitizer agent. Objectives: This study aimed at evaluating the effects of hematoporphyrin (HP)-mediated SPDT (dual-frequency ultrasound and laser radiation) in the management of mice breast adenocarcinoma. Methods: One hundred and thirty-two female mice with implanted tumors were divided into 22 groups, including sham, laser, 4 groups of dual-frequency ultrasound/laser radiation, 8 groups of HP-mediated SPDT (2.5 and 5 mg/kg), and 8 groups of HP encapsulated in mesoporous silica nanoparticles (HP-MSNs)-mediated SPDT. The sensitizer was administered by intraperitoneal injection and after a 24-hour delay, tumor grafted mice were treated with a combination of dual-frequency ultrasound and laser light. The tumor growth factors were used to assess the treatment outcome. Results: The results indicated that HP or HP-MSNs-mediated SPDT had a delaying tumor growth effect. In the groups treated with dual-frequency ultrasound and laser radiation, the maximum tumor growth inhibition (TGI) ratio was 47.5%, while the maximum TGI ratio in the SPDT groups was 61.6%. The time of T2 and T5 in the case of HP-MSNs-mediated SPDT groups was increased compared with sham and that of HP-mediated SPDT groups (P < 0.05). The inhibition ratio on tumor growth increased in all SPDT groups at 12 days after the treatment. Analysis of experimental data demonstrates that this increase was not declined and persisted over 30 days of treatment. The results indicated that SPDT is effective in relative tumor volume when compared with the sham group (339.1 ± 161 and 1510.8 ± 160, respectively). HP or HP-MSNs-mediated SPDT groups had Grade I (low), while others had Grade III (high) malignancy in the histological study of mice breast adenocarcinoma. Conclusions: The results revealed that when sensitized by dual-frequency SPDT, hematoporphyrin (with and without MSNs), has a promising effect at delaying tumor growth on mice breast cancer. Therefore, it can be appreciated that careful selection of the sensitizer with SPDT will play an eminent role in the success of cancer therapies.
Collapse
|
18
|
Yang L, Tang J, Yin H, Yang J, Xu B, Liu Y, Hu Z, Yu B, Xia F, Zou G. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode NIRF/MR Imaging and Photodynamic Therapy Applications. ACS Biomater Sci Eng 2022; 8:880-892. [PMID: 35099181 DOI: 10.1021/acsbiomaterials.1c01418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, the self-assembling strategy was used to synthesize a therapeutic and diagnostic nanosystem for tumor-triggered targeting dual-mode near-infrared fluorescence (NIRF)/magnetic resonance (MR) imaging and photodynamic therapy applications. This theranostic nanosystem was synthesized based on the self-assembling of the short peptide (PLGVRGRGDC) and the gadolinium chelator (diethylenetriamine pentaacetic acid) functionalized amphiphilic DSPE-PEG2000, followed by loading with the insoluble photosensitizer therapeutic agent chlorin e6 (Ce6). The formed theranostic nanosystem can accumulate in the matrix metalloproteinase 2 (MMP2) rich tumor sites guided by the enhanced permeability and retention effect and MMP2-substrate peptide (PLGVR) targeting. After PLGVR was hydrolyzed in the tumor microenvironment by MMP2, the nanosystem was actively taken up by tumor cells via Arg-Gly-Asp (RGD) peptide-mediated internalization. With the coexistence of gadolinium and Ce6, the formed nanosystem can be used for both NIRF/MR dual-mode imaging and photodynamic therapy. These tumor-triggered targeting self-assembled nanoparticles with low cytotoxicity and high endocytosis efficiency can efficiently induce A549 cancer cell apoptosis under laser irradiation. Meanwhile, they possessed enhanced tumor-targeted NIRF/MR imaging ability and efficiently inhibited tumor growth with minimal side effects in mice bearing A549 lung cancer. Therefore, these self-assembled theranostic nanoparticles may have great potential for cancer clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Lun Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Hui Yin
- Medical Department of Nanchang University, Nanchang 330006, China
| | - Jie Yang
- Medical Department of Nanchang University, Nanchang 330006, China
| | - Bin Xu
- Medical Department of Nanchang University, Nanchang 330006, China
| | - Yunkun Liu
- Medical Department of Nanchang University, Nanchang 330006, China
| | - Zhi Hu
- Medical Department of Nanchang University, Nanchang 330006, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Fangfang Xia
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Guowen Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
19
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
20
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|