1
|
Par M, Cheng L, Camilleri J, Lingström P. Applications of smart materials in minimally invasive dentistry - some research and clinical perspectives. Dent Mater 2024:S0109-5641(24)00287-2. [PMID: 39341720 DOI: 10.1016/j.dental.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES Dental caries is one of the most prevalent bacteria-induced non-communicable diseases globally. It is known to be the top oral health burden in both developing and developed nations. There is substantial literature on the disease process and there is still debate on the extent of caries removal needed and the adequacy of the materials available to restore the lost tooth structure. The current review discusses the disease process together with the contemporary management of the carious lesion and also presents substantial evidence on novel materials and techniques that make minimally invasive dentistry predictable. METHODS The written work presented shows the most relevant literature for the management of dental caries focusing on novel materials used in minimally invasive dentistry. RESULTS There is still much to learn about specific antimicrobial and caries prevention mechanisms of novel materials. Materials that respond to a single or a few stimuli remain "weakly intelligent" in the face of the complex microenvironment in the oral cavity. Engineered systems that combine artificial intelligence and chemical engineering, are expected to possess higher intelligence, self-healing capabilities as well as environmental adaptability, and may be future promising research directions. SIGNIFICANCE The targeted approach in managing dental caries will hopefully have a better clinical outcome. The strategies discussed are alternatives to the contemporary approach and will improve the clinical management.
Collapse
Affiliation(s)
- M Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - L Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Camilleri
- Dentistry, School of Health Sciences, College of Medicine and Health, University fo Birmingham, Birmingham, United Kingdom.
| | - P Lingström
- Department of Cariology, Institute of Odontolog, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Jang EJ, Hong YJ, Jeong YH, Kim KE, Jo ES, Lee MJ, Yang SY. In vitro antifungal and physicochemical properties of polymerized acrylic resin containing strontium-modified phosphate-based glass. BMC Oral Health 2024; 24:775. [PMID: 38987748 PMCID: PMC11238486 DOI: 10.1186/s12903-024-04547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.
Collapse
Affiliation(s)
- Eun-Jee Jang
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Ye-Ji Hong
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yoon-Ha Jeong
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Kyoung-Eun Kim
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Eun-Seo Jo
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan, 31065, Republic of Korea.
| | - Song-Yi Yang
- Department of Dental Hygiene, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
3
|
Kitagawa H, Kohno T, Deng F, Abe GL, Sakai H, Fan YS, Wu T, Sasaki JI, Imazato S. Metal-doped silicate and phosphate glasses for antibacterial dental biomaterials. Biomater Investig Dent 2023; 10:2284372. [PMID: 38979099 PMCID: PMC11229677 DOI: 10.1080/26415275.2023.2284372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 07/10/2024] Open
Abstract
Owing to the development of glass 45S5 (Bioglass®) comprising 45 mol% SiO2, 24.5 mol% Na2O, 24.5 mol% CaO, and 6 mol% P2O5, different compositions of silicate glasses have been developed. When these silicate glasses contact an aqueous environment, such as body fluids, they induce apatite layer formation on their surfaces owing to ion exchange. In addition to promoting hard tissue formation, researchers have sought to enhance the antibacterial properties of these glasses, thereby resulting in the development of metal-doped silicate glasses. The addition of antibacterial metals (silver, copper, zinc, and gallium) to silicate glass offers a promising avenue for combating oral pathogens. In recent years, there has been growing interest in metal-doped phosphate glasses. The release of metal ions can be regulated by modifying the dissolution rate of the phosphate glasses. This review summarizes the metal-doped silicate and phosphate glasses that confer antibacterial activity. Future strategies for the development of dental biomaterials that incorporate metal-doped glass and exhibit antibacterial effects are discussed.
Collapse
Affiliation(s)
- Haruaki Kitagawa
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Tomoki Kohno
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Fan Deng
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Gabriela L Abe
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Hirohiko Sakai
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Yo-Shiuan Fan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Tingyi Wu
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Jun-ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
4
|
Go HB, Lee MJ, Seo JY, Byun SY, Kwon JS. Mechanical properties and sustainable bacterial resistance effect of strontium-modified phosphate-based glass microfiller in dental composite resins. Sci Rep 2023; 13:17763. [PMID: 37853055 PMCID: PMC10584999 DOI: 10.1038/s41598-023-44490-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Dental composite resins are widely used in dental restorations. However, their clinical application is limited by the occurrence of secondary caries. Strontium-modified phosphate-based glass (Sr-PBG) is a material known to have a sustainable bacterial resistance effect. The mechanical properties (in particular, flexural strength, modulus of elasticity, and hardness) of dental materials determine their function. Therefore, this study aimed to investigate the mechanical and ion-releasing properties as well as the sustainable bacterial resistance effect of bioactive resin composites containing Sr-PBG. The data were analyzed by ANOVA and Tuckey's tests (p < 0.05). We incorporated a Sr-PBG microfiller at 3, 6, and 9 wt.% concentrations into a commercially available composite resin and investigated the mechanical properties (flexural strength, elastic modulus, and micro hardness), ion release characteristics, and color of the resultant resins. In addition, we examined the antibacterial effects of the composite resins against Streptococcus mutans (S. mutans). The mechanical properties of the Sr-PBG groups differed only slightly from those of the control group (p > 0.05). However, the optical density at 600 nm of S. mutans incubated on the experimental group was significantly lower compared to that observed with the control (p < 0.05) both before and after thermocycling between 5 and 55 ℃ for 850 cycles (dwell time: 45 s). Therefore, strontium-modified resin materials exhibited a sustainable bacterial resistance effect in vitro while maintaining some of the mechanical properties of ordinary acrylic resins.
Collapse
Affiliation(s)
- Hye-Bin Go
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sung-Yun Byun
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Melo M, Garcia I, Mokeem L, Weir M, Xu H, Montoya C, Orrego S. Developing Bioactive Dental Resins for Restorative Dentistry. J Dent Res 2023; 102:1180-1190. [PMID: 37555431 PMCID: PMC11066520 DOI: 10.1177/00220345231182357] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Despite its reputation as the most widely used restorative dental material currently, resin-based materials have acknowledged shortcomings. As most systematic survival studies of resin composites and dental adhesives indicate, secondary caries is the foremost reason for resin-based restoration failure and life span reduction. In subjects with high caries risk, the microbial community dominated by acidogenic and acid-tolerant bacteria triggers acid-induced deterioration of the bonding interface and/or bulk material and mineral loss around the restorations. In addition, resin-based materials undergo biodegradation in the oral cavity. As a result, the past decades have seen exponential growth in developing restorative dental materials for antimicrobial applications addressing secondary caries prevention and progression. Currently, the main challenge of bioactive resin development is the identification of efficient and safe anticaries agents that are detrimental free to final material properties and show satisfactory long-term performance and favorable clinical translation. This review centers on the continuous efforts to formulate novel bioactive resins employing 1 or multiple agents to enhance the antibiofilm efficacy or achieve multiple functionalities, such as remineralization and antimicrobial activity antidegradation. We present a comprehensive synthesis of the constraints and challenges encountered in the formulation process, the clinical performance-related prerequisites, the materials' intended applicability, and the current advancements in clinical implementation. Moreover, we identify crucial vulnerabilities that arise during the development of dental materials, including particle aggregation, alterations in color, susceptibility to hydrolysis, and loss of physicomechanical core properties of the targeted materials.
Collapse
Affiliation(s)
- M.A.S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - I.M. Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - L. Mokeem
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H.H.K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - S. Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Muradbegovic A, Par M, Panduric V, Zugec P, Tauböck TT, Attin T, Tarle Z, Marovic D. Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass. J Funct Biomater 2023; 14:298. [PMID: 37367262 DOI: 10.3390/jfb14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The aim of the study was to evaluate microhardness, mass changes during 1-year water immersion, water sorption/solubility, and calcium phosphate precipitation of experimental composites functionalized with 5-40 wt% of two types of bioactive glass (BG): 45S5 or a customized low-sodium fluoride-containing formulation. Vickers microhardness was evaluated after simulated aging (water storage and thermocycling), water sorption and solubility were tested according to ISO 4049, and calcium phosphate precipitation was studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. For the composites containing BG 45S5, a significant reduction in microhardness was observed with increasing BG amount. In contrast, 5 wt% of the customized BG resulted in statistically similar microhardness to the control material, while higher BG amounts (20 and 40 wt%) resulted in a significant improvement in microhardness. Water sorption was more pronounced for composites containing BG 45S5, increasing 7-fold compared to the control material, while the corresponding increase for the customized BG was only 2-fold. Solubility increased with higher amounts of BG, with an abrupt increase at 20 and 40 wt% of BG 45S5. Calcium phosphate was precipitated by all composites with BG amounts of 10 wt% or more. The improved properties of the composites functionalized with the customized BG indicate better mechanical, chemical, and dimensional stability without compromising the potential for calcium phosphate precipitation.
Collapse
Affiliation(s)
- Alen Muradbegovic
- Muradbegović Dental Clinic, Malkočeva 3, 75000 Tuzla, Bosnia and Herzegovina
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Vlatko Panduric
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Paula Zugec
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Poly (Methyl Methacrylate)-Containing Silver-Phosphate Glass Exhibits Potent Antimicrobial Activity without Deteriorating the Mechanical and Biological Properties of Dental Prostheses. Polymers (Basel) 2023; 15:polym15020297. [PMID: 36679178 PMCID: PMC9864078 DOI: 10.3390/polym15020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Poly (methyl methacrylate) (PMMA) is a commonly used denture material with poor antimicrobial effects. This study investigated the antimicrobial effects of PMMA-containing silver-phosphate glass. We fabricated a novel material comprising PMMA-containing silver-phosphate glass. Then, microhardness, flexural strength, and gloss unit were analyzed. Antimicrobial activity against Streptococcus mutans and Candida albicans was investigated. Colony-forming units were counted, and antimicrobial rates were measured. Biocompatibility tests were performed using a colorimetric MTT assay for evaluating cell metabolic activity. The microhardness, flexural strength, and gloss unit of the experimental groups (with silver-phosphate glass) were not significantly different from those of the control group (no silver-phosphate glass) (P > 0.05), which showed clinically valid values. With increasing proportions of silver-phosphate glass, the antimicrobial activity against the two microorganisms increased (P < 0.05). Furthermore, S. mutans showed more than 50% antimicrobial activity in 4%, 6%, and 8% experimental groups, C. albicans showed more than 50% antimicrobial activity in 6% and 8% groups, and a statistically significant difference in antimicrobial activity was observed compared to the control (P < 0.05). The cell viability of the experimental groups was not significantly different from that of the control group (P > 0.05). Both control and experimental groups showed approximately 100% cell viability. These results suggest that silver-phosphate glass is a promising antimicrobial material in dentistry.
Collapse
|
8
|
Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci Rep 2022; 12:19456. [PMID: 36376540 PMCID: PMC9663707 DOI: 10.1038/s41598-022-24172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of auto-polymerized acrylic resin by pathogenic Candida albicans is a common problem for denture users. In this study, zinc-modified phosphate-based glass was introduced into an auto-polymerized acrylic resin at concentrations of 3, 5, and 7 wt.%. The mechanical or physical properties (flexural strength, elastic modulus, microhardness, and contact angle), surface morphology of the resultant materials, and the antimicrobial effect on C. albicans were investigated. There were no statistical differences in the mechanical properties between the control and the zinc-modified phosphate-based glass samples (p > 0.05); however, the number of C. albicans colony-forming units was significantly lower in the control group (p < 0.05). Scanning electron microscopy revealed that C. albicans tended not to adhere to the zinc-modified-phosphate-based glass samples. Thus, the zinc-modified materials retained the advantageous mechanical properties of unaltered acrylic resins, while simultaneously exhibiting a strong antimicrobial effect in vitro.
Collapse
|
9
|
Saleem I, Rana NF, Tanweer T, Arif W, Shafique I, Alotaibi AS, Almukhlifi HA, Alshareef SA, Menaa F. Effectiveness of Se/ZnO NPs in Enhancing the Antibacterial Activity of Resin-Based Dental Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7827. [PMID: 36363419 PMCID: PMC9658905 DOI: 10.3390/ma15217827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Biofilm formation in the resin-composite interface is a major challenge for resin-based dental composites. Using doped z nanoparticles (NPs) to enhance the antibacterial properties of resin composites can be an effective approach to prevent this. The present study focused on the effectiveness of Selenium-doped ZnO (Se/ZnO) NPs as an antibacterial nanofiller in resin composites and their impact on their mechanical properties. Pristine and Se/ZnO NPs were synthesized by the mechanochemical method and confirmed through UV-Vis Spectroscopy, FTIR (Fourier Transform Infrared) analysis, X-ray Diffraction (XRD) crystallography, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Zeta analysis. The resin composites were then modified by varying concentrations of pristine and Se/ZnO NPs. A single species (S. mutans and E. faecalis) and a saliva microcosm model were utilized for antibacterial analysis. Hemolytic assay and compressive strength tests were also performed to test the modified composite resin's cytotoxicity and mechanical strength. When incorporated into composite resin, 1% Se/ZnO NPs showed higher antibacterial activity, biocompatibility, and higher mechanical strength when compared to composites with 1% ZnO NPs. The Se/ZnO NPs has been explored for the first time as an efficient antibacterial nanofiller for resin composites and showed effectiveness at lower concentrations, and hence can be an effective candidate in preventing secondary caries by limiting biofilm formation.
Collapse
Affiliation(s)
- Iqra Saleem
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tahreem Tanweer
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Wafa Arif
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Iqra Shafique
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Amenah S. Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Farid Menaa
- Departments of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| |
Collapse
|
10
|
Yun J, Burrow MF, Matinlinna JP, Wang Y, Tsoi JKH. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. J Funct Biomater 2022; 13:jfb13040208. [PMID: 36412849 PMCID: PMC9680275 DOI: 10.3390/jfb13040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth.
Collapse
Affiliation(s)
- Jiaojiao Yun
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-28590515
| |
Collapse
|
11
|
Plasma-Initiated Grafting of Bioactive Peptide onto Nano-CuO/Tencel Membrane. Polymers (Basel) 2022; 14:polym14214497. [DOI: 10.3390/polym14214497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
A bioactive peptide has been successfully grafted onto nano-CuO impregnated Tencel membranes by a simple and rapid method involving a series of textile processes, and an atmospheric argon plasma treatment that requires no additional solvent or emulsifier. Surface morphology shows an apparent change from smooth, slightly roughened, and stripped with increasing plasma treatment time. The FT-IR characteristic peaks confirm the presence of the CuO nanoparticle and peptide on the extremely hydrophilic Tencel membranes that exhibit a zero-degree contact angle. Prepared nano-CuO/Tencel membranes with 90 s plasma treatment time exhibit excellent antimicrobial activity against E. coli and S. aureus, and promote fibroblast cell viability with the assistance of a grafted bioactive peptide layer on the membrane surface.
Collapse
|
12
|
Overviews on the Progress of Flowable Dental Polymeric Composites: Their Composition, Polymerization Process, Flowability and Radiopacity Aspects. Polymers (Basel) 2022; 14:polym14194182. [PMID: 36236127 PMCID: PMC9570751 DOI: 10.3390/polym14194182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
A review article has been conducted including the main research results and comments referring to flowable dental polymeric materials. To begin with, the synthesis and composition of this category of composites is discussed, revealing the major components of the commercial products in terms of chemistry and proportion. Later, the polymerization characteristics are unfolded regarding the reaction time and rate, volumetric shrinkage and depth of cure for both photocurable and self-curable composites. To continue, some perspectives of the pre-treatment or accompanying processes that a clinician may follow to enhance the materials' performance are described. Fluidity is certainly associated with the progress of polymerization and the in-depth conversion of monomers to a polymeric network. Last, the aspects of radiopacity and translucency are commented on, showing that all flowable polymeric composites satisfy the radiography rule, while the masking ability depends on the fillers' properties and specimen thickness. The reviewing article is addressed to all field scientists and practitioners dealing with flowable dental composites studies or applications.
Collapse
|
13
|
Abstract
Bioactive materials for dental resin restorations are a rising field of investigation exploring treatment strategies for reducing the recurrence of carious lesions. The current effort has been directed toward developing dental materials that can inhibit biofilms and prevent tooth mineral loss. Bioactive resin materials have shown the potential to interfere with polymicrobial consortia in vivo and help maintain the lifespan of restorations.
Collapse
Affiliation(s)
- Mary Anne S Melo
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA; Division of Operative Dentistry, Department of General Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Lamia Mokeem
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Oh SH, Jung YS, Lee MJ. Assessment of Zinc-Bound Phosphate-Based Glass-Coated Denture-Relining Material with Antifungal Efficacy for Inhibiting Denture Stomatitis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3048. [PMID: 36080085 PMCID: PMC9457723 DOI: 10.3390/nano12173048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the surface properties, biocompatibility, and antifungal activity against Candida albicans of a denture-relining material coated with zinc-bound phosphate-based glass. First, zinc-bound phosphate-based glass was fabricated. A polymerized denture-relining disk was coated with zinc-bound phosphate-based glass (2%, 4%, and 6%). The surface properties of the control and experimental groups were measured, including the wettability, microhardness, color difference, and gloss. The biocompatibility was evaluated using the MTT assay according to ISO 10993-5. The antifungal activity was investigated by counting the number of colony-forming units of Candida albicans. The results were analyzed using a one-way ANOVA and Tukey's test (p = 0.05). The results of this study indicate that, despite the antimicrobial effect of zinc-bound phosphate-based glass, a coated denture-relining material does not degrade the surface properties and biocompatibility. Therefore, this novel material is considered promising for use as a dental material with antimicrobial properties that can potentially prevent denture stomatitis.
Collapse
Affiliation(s)
- Sang-Hwan Oh
- Department of Dental Hygiene, Konyang University, Daejeon 35365, Korea
| | - Yun-Sook Jung
- Department of Dental Hygiene, College of Science & Technology, Kyungpook National University, Sangju 37224, Korea
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan 31065, Korea
| |
Collapse
|
15
|
Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent 2022; 118:103950. [PMID: 35026355 DOI: 10.1016/j.jdent.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To prepare experimental composites with bioactive glass (BG) and investigate their release of calcium (Ca), phosphate (PO4), and fluoride (F), as well as pH changes and apatite precipitation after immersion. METHODS Experimental composites were prepared with 0, 10, or 20 wt% of either BG 45S5 or a customized low-Na F-containing BG. Three commercial ion-releasing materials were used for reference. Material specimens were immersed in lactic acid (pH = 4.0) and artificial saliva (pH = 6.4). Ion concentrations (atomic absorption spectrometry for Ca, UV-vis spectrometry for PO4, and ion-selective electrode for F) and pH were measured after 4, 8, 12, 16, 20, 24, 28, and 32 days. After immersion, composite specimens were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. RESULTS Material-dependent concentrations of Ca, PO4, and F were measured in the lactic acid solution, while a decrease of Ca and PO4 concentrations was observed in artificial saliva. The uptake of ions from artificial saliva indicates their precipitation on specimen surfaces, which was supported by the results of SEM and FTIR investigations. In experimental composites functionalized with both bioactive glass types and a commercial "alkasite" material, apatite was precipitated not only in artificial saliva but also in the lactic acid solution. CONCLUSIONS Experimental BG-containing composites and selected commercial restorative materials demonstrated the potential for releasing multiple ion types and increasing pH. CLINICAL SIGNIFICANCE The observed effects can be beneficial for preventing demineralization and promoting remineralization of dental hard tissues, while apatite precipitation can additionally help in sealing marginal discontinuities.
Collapse
|
16
|
Han X, Chen Y, Jiang Q, Liu X, Chen Y. Novel Bioactive Glass-Modified Hybrid Composite Resin: Mechanical Properties, Biocompatibility, and Antibacterial and Remineralizing Activity. Front Bioeng Biotechnol 2021; 9:661734. [PMID: 34141700 PMCID: PMC8205519 DOI: 10.3389/fbioe.2021.661734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Secondary caries seriously limits the lifetime of composite resin. However, integrating all desirable properties (i.e., mechanical, antibacterial, bioactivity, and biocompatibility) into one composite resin is still challenging. Herein, a novel bioactive glass (BAG)-modified hybrid composite resin has been successfully developed to simultaneously achieve excellent mechanical properties, good biocompatibility, and antibacterial and remineralizing capabilities. When the mass fractions of BAG particles were added from 8 to 23 wt %, the original mechanical properties of the composite resin, including flexural strength and compressive strength, were not obviously affected without compromising the degree of conversion. Although the BAG incorporation of mass fractions of 16 wt % to 23 wt % in composite resins reduced cell viability, the viability could be recovered to normal by adjusting the pH value. Moreover, the BAG-modified composite resins that were obtained showed good antibacterial effects against Streptococcus mutans and enhanced remineralizing activity on demineralized dentin surfaces with increasing incorporation of BAG particles. The possible mechanisms for antibacterial and remineralizing activity might be closely related to the release of bioactive ions (Ca2+, Si4+), suggesting that its antibacterial and biological properties can be controlled by modulating the amounts of bioactive ions. The capability to balance the mechanical properties, cytotoxicity, antibacterial activity, and bioactivity makes the BAG-modified composite resin a promising prospect for clinical application. Our findings provide insight into better design and intelligent fabrication of bioactive composite resins.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Periodontology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qian Jiang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yaming Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Antibacterial Activity of Nanoparticles. NANOMATERIALS 2021; 11:nano11061391. [PMID: 34070314 PMCID: PMC8225165 DOI: 10.3390/nano11061391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
|
18
|
De Melo N, Murrell L, Islam MT, Titman JJ, Macri-Pellizzeri L, Ahmed I, Sottile V. Tailoring Pyro-and Orthophosphate Species to Enhance Stem Cell Adhesion to Phosphate Glasses. Int J Mol Sci 2021; 22:ijms22020837. [PMID: 33467686 PMCID: PMC7829838 DOI: 10.3390/ijms22020837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphate-based glasses (PBGs) offer significant therapeutic potential due to their bioactivity, controllable compositions, and degradation rates. Several PBGs have already demonstrated their ability to support direct cell growth and in vivo cytocompatibility for bone repair applications. This study investigated development of PBG formulations with pyro- and orthophosphate species within the glass system (40 − x)P2O5·(16 + x)CaO·20Na2O·24MgO (x = 0, 5, 10 mol%) and their effect on stem cell adhesion properties. Substitution of phosphate for calcium revealed a gradual transition within the glass structure from Q2 to Q0 phosphate species. Human mesenchymal stem cells were cultured directly onto discs made from three PBG compositions. Analysis of cells seeded onto the discs revealed that PBG with higher concentration of pyro- and orthophosphate content (61% Q1 and 39% Q0) supported a 4.3-fold increase in adhered cells compared to glasses with metaphosphate connectivity (49% Q2 and 51% Q1). This study highlights that tuning the composition of PBGs to possess pyro- and orthophosphate species only, enables the possibility to control cell adhesion performance. PBGs with superior cell adhesion profiles represent ideal candidates for biomedical applications, where cell recruitment and support for tissue ingrowth are of critical importance for orthopaedic interventions.
Collapse
Affiliation(s)
- Nigel De Melo
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK; (N.D.M.); (L.M.-P.)
| | - Lauren Murrell
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (L.M.); (M.T.I.)
| | - Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (L.M.); (M.T.I.)
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jeremy J. Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Laura Macri-Pellizzeri
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK; (N.D.M.); (L.M.-P.)
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (L.M.); (M.T.I.)
- Correspondence: (I.A.); (V.S.)
| | - Virginie Sottile
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK; (N.D.M.); (L.M.-P.)
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy
- Correspondence: (I.A.); (V.S.)
| |
Collapse
|