1
|
Kar D, V P, Si S, Panigrahi H, Mishra S. Carbon Dots and Their Polymeric Nanocomposites: Insight into Their Synthesis, Photoluminescence Mechanisms, and Recent Trends in Sensing Applications. ACS OMEGA 2024; 9:11050-11080. [PMID: 38497004 PMCID: PMC10938319 DOI: 10.1021/acsomega.3c07612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Carbon dots (CDs), a novel class of carbon-based nanoparticles, have received a lot of interest recently due to their exceptional mechanical, chemical, and fluorescent properties, as well as their excellent photostability and biocompatibility. CDs' emission properties have already found a variety of potential applications, in which bioimaging and sensing are major highlights. It is widely acknowledged that CDs' fluorescence and surface conditions are closely linked. However, due to the structural complexity of CDs, the specific underlying process of their fluorescence is uncertain and yet to be explained. Because of their low toxicity, robust and wide optical absorption, high chemical stability, rapid transfer characteristics, and ease of modification, CDs have been recognized as promising carbon nanomaterials for a variety of sensing applications. Thus, following such outstanding properties of CDs, they have been mixed and imprinted onto different polymeric components to achieve a highly efficient nanocomposite with improved functional groups and properties. Here, in this review, various approaches and techniques for the preparation of polymer/CDs nanocomposites have been elaborated along with the individual characteristics of CDs. CDs/polymer nanocomposites recently have been highly demanded for sensor applications. The insights from this review are detailed sensor applications of polymer/CDs nanocomposites especially for detection of different chemical and biological analytes such as metal ions, small organic molecules, and several contaminants.
Collapse
Affiliation(s)
- Dilip
Kumar Kar
- School of Chemical
Technology, Kalinga Institute of Industrial
Technology, Bhubaneswar, 751024, Odisha, India
| | - Praveenkumar V
- Institute of Chemical
Technology (ICT), Indian Oil Campus (IOC), Bhubaneswar, 751013, Odisha, India
| | - Satyabrata Si
- School of Chemical
Technology, Kalinga Institute of Industrial
Technology, Bhubaneswar, 751024, Odisha, India
| | - Harekrishna Panigrahi
- School of Chemical
Technology, Kalinga Institute of Industrial
Technology, Bhubaneswar, 751024, Odisha, India
| | - Smrutirekha Mishra
- Institute of Chemical
Technology (ICT), Indian Oil Campus (IOC), Bhubaneswar, 751013, Odisha, India
| |
Collapse
|
2
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
3
|
Bosu S, Rajamohan N, Sagadevan S, Raut N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. CHEMOSPHERE 2023; 345:140471. [PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Collapse
Affiliation(s)
- Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nitin Raut
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
4
|
Rodriguez N, Morales DP, Rivadeneyra A. Editorial: Functional Nanomaterials for Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3750. [PMID: 36364526 PMCID: PMC9655613 DOI: 10.3390/nano12213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Functional nanomaterials have become one of the most fascinating fields in nanotechnology [...].
Collapse
|
5
|
Pereira N, Rezende N, Cunha THR, Barboza APM, Silva GG, Lippross D, Neves BRA, Chacham H, Ferlauto AS, Lacerda RG. Aerosol-Printed MoS 2 Ink as a High Sensitivity Humidity Sensor. ACS OMEGA 2022; 7:9388-9396. [PMID: 35356695 PMCID: PMC8945157 DOI: 10.1021/acsomega.1c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 05/13/2023]
Abstract
Molybdenum disulfide (MoS2) is attractive for use in next-generation nanoelectronic devices and exhibits great potential for humidity sensing applications. Herein, MoS2 ink was successfully prepared via a simple exfoliation method by sonication. The structural and surface morphology of a deposited ink film was analyzed by scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The aerosol-printed MoS2 ink sensor has high sensitivity, with a conductivity increase by 6 orders of magnitude upon relative humidity increase from 10 to 95% at room temperature. The sensor also has fast response/recovery times and excellent repeatability. Possible mechanisms for the water-induced conductivity increase are discussed. An analytical model that encompasses two ionic conduction regimes, with a percolation transition to an insulating state below a low humidity threshold, describes the sensor response successfully. In conclusion, our work provides a low-cost and straightforward strategy for fabricating a high-performance humidity sensor and fundamental insights into the sensing mechanism.
Collapse
Affiliation(s)
- Neuma
M. Pereira
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
| | - Natália
P. Rezende
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
| | - Thiago H. R. Cunha
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
| | - Ana P. M. Barboza
- Departamento
de Física, Universidade Federal de
Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Glaura G. Silva
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
| | - Daniel Lippross
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
| | - Bernardo R. A. Neves
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
| | - Hélio Chacham
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
| | - Andre S. Ferlauto
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
- Centro
de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Rodrigo G. Lacerda
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais 31270-90, Brazil
- Centro
de Tecnologia em Nanomateriais e Grafeno/UFMG, Universidade Federal de Minas Gerais, BHtec, Belo Horizonte, Minas Gerais 31310-260, Brazil
| |
Collapse
|
6
|
Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. COATINGS 2021. [DOI: 10.3390/coatings11091100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) have generated much interest because of their significant fluorescence (FL) properties, extraordinary photophysical attributes, and long-term colloidal stability. CDs have been regarded as a prospective carbon nanomaterial for various sensing applications because of their low toxicity, strong and broad optical absorption, high chemical stability, rapid transfer properties, and easy modification. To improve their functionality, CD/polymer composites have been developed by integrating polymers into CDs. CD/polymer composites have diversified because of their easy preparation and applications in sensing, optoelectronics, semiconductors, molecular delivery, and various commercial fields. Many review articles are available regarding the preparation and applications of CDs. Some review articles describing the production and multiple applications of the composites are available. However, no such article has focused on the types of precursors, optical properties, coating characteristics, and specific sensing applications of CD/polymer composites. This review aimed to highlight and summarize the current progress of CD/polymer composites in the last five years (2017–2021). First, we overview the precursors used for deriving CDs and CD/polymer composites, synthesis methods for preparing CDs and CD/polymer composites, and the optical properties (absorbance, FL, emission color, and quantum yield) and coating characteristics of the composites. Most carbon and polymer precursors were dominated by synthetic precursors, with citric acid and polyvinyl alcohol widely utilized as carbon and polymer precursors, respectively. Hydrothermal treatment for CDs and interfacial polymerization for CDs/polymers were frequently performed. The optical properties of CDs and CD/polymer composites were almost identical, denoting that the optical characters of CDs were well-maintained in the composites. Then, the chemical, biological, and physical sensing applications of CD/polymer composites are categorized and discussed. The CD/polymer composites showed good performance as chemical, biological, and physical sensors for numerous targets based on FL quenching efficiency. Finally, remaining challenges and future perspectives for CD/polymer composites are provided.
Collapse
|
7
|
Barmpakos D, Kaltsas G. A Review on Humidity, Temperature and Strain Printed Sensors-Current Trends and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:739. [PMID: 33499146 PMCID: PMC7865274 DOI: 10.3390/s21030739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Printing technologies have been attracting increasing interest in the manufacture of electronic devices and sensors. They offer a unique set of advantages such as additive material deposition and low to no material waste, digitally-controlled design and printing, elimination of multiple steps for device manufacturing, wide material compatibility and large scale production to name but a few. Some of the most popular and interesting sensors are relative humidity, temperature and strain sensors. In that regard, this review analyzes the utilization and involvement of printing technologies for full or partial sensor manufacturing; production methods, material selection, sensing mechanisms and performance comparison are presented for each category, while grouping of sensor sub-categories is performed in all applicable cases. A key aim of this review is to provide a reference for sensor designers regarding all the aforementioned parameters, by highlighting strengths and weaknesses for different approaches in printed humidity, temperature and strain sensor manufacturing with printing technologies.
Collapse
Affiliation(s)
- Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive-Grove Campus, 12243 Athens, Greece;
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, Agia Paraskevi, 15310 Athens, Greece
- Physics Department, University of Patras, Rion, 26504 Patras, Greece
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive-Grove Campus, 12243 Athens, Greece;
| |
Collapse
|