1
|
Rezagholizade-Shirvan A, Ghasemi A, Mazaheri Y, Shokri S, Fallahizadeh S, Alizadeh Sani M, Mohtashami M, Mahmoudzadeh M, Sarafraz M, Darroudi M, Rezaei Z, Shamloo E. Removal of aflatoxin M 1 in milk using magnetic laccase/MoS 2/chitosan nanocomposite as an efficient sorbent. CHEMOSPHERE 2024; 365:143334. [PMID: 39278325 DOI: 10.1016/j.chemosphere.2024.143334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The current study tries to find the impact of the integration of laccase enzyme (Lac) onto magnetized chitosan (Cs) nanoparticles composed of molybdenum disulfide (MoS2 NPs) (Fe3O4/Cs/MoS2/Lac NPs) on the removal of AFM1 in milk samples. The Fe3O4/Cs/MoS2/Lac NPs were characterized by FT-IR, XRD, BET, TEM, FESEM, EDS, PSA, and VSM analysis. The cytotoxic activity of the synthesized nanoparticles in different concentrations was evaluated using the MTT method. The results show that the synthesized nanoparticles don't have cytotoxic activity at concentrations less than 20 mg/l. The ability of the prepared nanoparticles to remove AFM1 was compared by bare laccase enzyme, MoS2, and Fe3O4/Cs/MoS2 composite, indicating that the Fe3O4/Cs/MoS2/Lac NPs the highest adsorption efficiency toward AFM1. Besides, the immobilization efficiency of laccase with a concentration range of 0.5-2.0 was investigated, indicating that the highest activity recovery of 96.8% was obtained using 2 mg/ml laccase loading capacity. The highest removal percentage of AFM1 (68.5%) in the milk samples was obtained by the Fe3O4/Cs/MoS2/Lac NPs at a contact time of 1 h. As a result, Fe3O4/MoS2/Cs/Lac NPs can potentially be utilized as an effective sorbent with high capacity and selectivity to remove AFM1 from milk samples.
Collapse
Affiliation(s)
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Mazaheri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fallahizadeh
- School of Public Health, Yasuj University of Medical Sciences, Yasuj, Iran; Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
2
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
3
|
Shokri S, Shariatifar N, Molaee-Aghaee E, Khaniki GJ, Sadighara P, Faramarzi MA, Mohammadi M, Rezagholizade-Shirvan A. Synthesis and characterization of a novel magnetic chitosan-nickel ferrite nanocomposite for antibacterial and antioxidant properties. Sci Rep 2023; 13:15777. [PMID: 37737259 PMCID: PMC10516962 DOI: 10.1038/s41598-023-42974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
A novel nanomagnet modified with nickel ferrite nanoparticles (NPs) coated with hybrid chitosan (Cs-NiFe2O4) was synthesized using the co-precipitation method. The resulting nanomagnets were characterized using various techniques. The size of the nanomagnetic particles was estimated to be about 40 nm based on the transmission electron microscopy (TEM) image and X-ray diffraction analysis (XRD) pattern (using the Debye-Scherrer equation). Scanning electron microscopy (SEM) images indicated that the surface of Cs-NiFe2O4 NPs is flatter and smoother than the uncoated NiFe2O4 NPs. According to value stream mapping (VSM) analysis, the magnetization value of Cs-NiFe2O4 NPs (17.34 emu/g) was significantly lower than NiFe2O4 NPs (40.67 emu/g). The Cs-NiFe2O4 NPs indicated higher antibacterial properties than NiFe2O4 NPs and Cs. The minimum inhibitory concentrations of Cs-NiFe2O4 NPs against S. aureus and E. coli were 128 and 256 mg/mL, respectively. Antioxidant activity (evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test) for NiFe2O4 NPs and Cs-NiFe2O4 NPs at the concentration of 100 µg/mL were 35% and 42%, respectively. Consequently, the synthesized Cs-NiFe2O4 NPs can be proposed as a viable material for biomedical applications.
Collapse
Affiliation(s)
- Samira Shokri
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Puspita K, Chiari W, Abdulmadjid SN, Idroes R, Iqhrammullah M. Four Decades of Laccase Research for Wastewater Treatment: Insights from Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:308. [PMID: 36612634 PMCID: PMC9819511 DOI: 10.3390/ijerph20010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Increasing trends of environmental pollution and emerging contaminants from anthropogenic activities have urged researchers to develop innovative strategies in wastewater management, including those using the biocatalyst laccase (EC 1.10.3.2). Laccase works effectively against a variety of substrates ranging from phenolic to non-phenolic compounds which only require molecular oxygen to be later reduced to H2O as the final product. In this study, we performed a bibliometric analysis on the metadata of literature acquired through the Scopus database (24 October 2022) with keyword combination "Laccase" AND "Pollutant" OR "Wastewater". The included publications were filtered based on year of publication (1978-2022), types of articles (original research articles and review articles) and language (English). The metadata was then exported in a CSV (.csv) file and visualized on VosViewer software. A total of 1865 publications were identified, 90.9% of which were original research articles and the remaining 9.1% were review articles. Most of the authors were from China (n = 416; 22.3%) and India (n = 276; 14.79%). In the case of subject area, 'Environmental Science' emerged with the highest published documents (n = 1053; 56.46%). The identified papers mostly cover laccase activity in degrading pollutants, and chitosan, which can be exploited for the immobilization. We encourage more research on laccase-assisted wastewater treatment, especially in terms of collaborations among organizations.
Collapse
Affiliation(s)
- Kana Puspita
- Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Williams Chiari
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh 23243, Indonesia
| | - Syahrun N. Abdulmadjid
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Muhammad Iqhrammullah
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh 23243, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
5
|
Solra M, Das S, Srivastava A, Sen B, Rana S. Temporally Controlled Multienzyme Catalysis Using a Dissipative Supramolecular Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45096-45109. [PMID: 36171536 DOI: 10.1021/acsami.2c08888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of superior functional enzyme mimics (nanozymes) is essential for practical applications, including point-of-care diagnostics, biotechnological applications, biofuels, and environmental remediation. Nanozymes with the ability to control their catalytic activity in response to external fuels offer functionally valuable platforms mimicking nonequilibrium systems in nature. Herein, we fabricated a supramolecular coordination bonding-based dynamic vesicle that exhibits multienzymatic activity. The supramolecular nanozyme shows effective laccase-like catalytic activity with a KM value better than the native enzyme and higher stability in harsh conditions. Besides, the nanostructure demonstrates an efficient peroxidase-like activity with NADH peroxidase-like properties. Generation of luminescence from luminol and oxidation of dopamine are efficiently catalyzed by the nanozyme with high sensitivity, which is useful for point-of-care detections. Notably, the active nanozyme exhibits dynamic laccase-mimetic activity in response to pH variation, which has never been explored before. While a neutral/high pH leads to the self-assembly, a low pH disintegrates the assembled nanostructures and consequently turns off the nanozyme activity. Altogether, the self-assembled Cu2+-based vesicular nanostructure presents a pH-fueled dissipative system demonstrating effective temporally controlled multienzymatic activity.
Collapse
Affiliation(s)
- Manju Solra
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Abhay Srivastava
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Bhaskar Sen
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| |
Collapse
|
6
|
Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: degradation mechanism and mineralization pathway. Heliyon 2022; 8:e09919. [PMID: 35865982 PMCID: PMC9294056 DOI: 10.1016/j.heliyon.2022.e09919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
As a hazardous organic chemical raw material, Bisphenol A (BPA) has attracted a great deal of scientific and public attention. In this study, the chitosan functionalized halloysite nanotubes immobilized laccase (lac@CS-HNTs) was prepared by simultaneous adsorption-covalent binding method to remove BPA for the first time. We optimized the preparation of lac@CS-NHTs by controlling one-factor variable method and response surface methodology (RSM). The cubic polynomial regression model via Design-Expert 12 was developed to describe the optimal preparation conditions of immobilized laccase. Under the optimal conditions, lac@CS-NHTs obtained the maximum enzyme activity, and the enzyme loading was as high as 60.10 mg/g. The results of batch removal experiment of BPA showed that under the optimum treatment condition, the BPA removal rate of lac@CS-NHTs, FL and heat-inactivated lac@CS-NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated that the contribution of biodegradation was greater than adsorption. In addition, the relative activity of lac@CS-NHTs dropped to about 44.24 % after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs have the potential to reduce costs in practical applications. Finally, the possible degradation mechanism and mineralization pathway of BPA were given via High-performance liquid chromatography (HPLC) analysis and gas chromatography-mass spectrometry (GC-MS) analysis.
Collapse
|
7
|
El-Sharkawy RM, Swelim MA, Hamdy GB. Aspergillus tamarii mediated green synthesis of magnetic chitosan beads for sustainable remediation of wastewater contaminants. Sci Rep 2022; 12:9742. [PMID: 35697833 PMCID: PMC9192714 DOI: 10.1038/s41598-022-13534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
The release of different hazardous substances into the water bodies during the industrial and textile processing stages is a serious problem in recent decades. This study focuses on the potentiality of Fe3O4-NPs-based polymer in sustainable bioremediation of toxic substances from contaminated water. The biosynthesis of Fe3O4-NPs by A. tamarii was performed for the first time. The effect of different independent variables on the Fe3O4-NPs production were optimized using Plackett-Burman design and central composite design (CCD) of Response Surface Methodology. The optimum Fe3O4-NPs production was determined using incubation period (24 h), temperature (30 °C), pH (12), stirring speed (100 rpm) and stirring time (1 h). The incorporation of Fe3O4-NPs into chitosan beads was successfully performed using sol-gel method. The modified nanocomposite exhibited remarkable removal capability with improved stability and regeneration, compared to control beads. The optimal decolorization was 94.7% at 1.5 g/l after 90 min of treatment process. The reusability of biosorbent beads displayed 75.35% decolorization after the 7th cycle. The results showed a highly significant reduction of physico-chemical parameters (pH, TDS, TSS, COD, EC, and PO4) of contaminated wastewater. The sorption trials marked Fe3O4-NPs-based biopolymer as efficient and sustainable biosorbent for the elimination of hazardous toxic pollutants of wastewater in a high-speed rate.
Collapse
Affiliation(s)
- Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt.
| | - Mahmoud A Swelim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Ghada B Hamdy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
8
|
Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring phenolic compounds is critical in the environmental, food, and medical sectors. Among many recent advanced detection platforms, laccase-based biosensing platforms gave very rapid, effective, online, and in situ sensing of phenolic compounds. In laccase-based biosensors, laccase immobilization techniques have a vital role. However, a detailing of the advancements in laccase immobilization techniques employed in laccase-based biosensors is lacking in the literature. Thus, in this review, we assessed how the nano-immobilization techniques shaped the laccase biosensing platforms. We discussed novel developments in laccase immobilization techniques such as entrapment, adsorption, cross-linking, and covalent over new nanocomposites in laccase biosensors. We made a comprehensive assessment based on the current literature for future perspectives of nano-immobilized laccase biosensors. We found the important key areas toward which future laccase biosensor research seems to be heading. These include 1. A focus on the development of multi-layer laccase over electrode surface, 2. The need to utilize more covalent immobilization routes, as they change the laccase specificity toward phenolic compounds, 3. The advancement in polymeric matrices with electroconductive properties, and 4. novel entrapment techniques like biomineralization using laccase molecules. Thus, in this review, we provided a detailed account of immobilization in laccase biosensors and their feasibility in the future for the development of highly specific laccase biosensors in industrial, medicinal, food, and environmental applications.
Collapse
|
9
|
Thiolation of Myco-Synthesized Fe3O4-NPs: A Novel Promising Tool for Penicillium expansium Laccase Immobilization to Decolorize Textile Dyes and as an Application for Anticancer Agent. J Fungi (Basel) 2022; 8:jof8010071. [PMID: 35050011 PMCID: PMC8777717 DOI: 10.3390/jof8010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Environmental pollution due to the continuous uncontrolled discharge of toxic dyes into the water bodies provides insight into the need to eliminate pollutants prior to discharge is significantly needed. Recently, the combination of conventional chemotherapeutic agents and nanoparticles has attracted considerable attention. Herein, the magnetic nanoparticles (Fe3O4-NPs) were synthesized using metabolites of Aspergillus niger. Further, the surfaces of Fe3O4-NPs were functionalized using 3-mercaptoproionic acid as confirmed by XRD, TEM, and SEM analyses. A purified P. expansum laccase was immobilized onto Fe3O4/3-MPA-SH and then the developed immobilized laccase (Fe3O4/3-MPA-S-S-laccase) was applied to achieve redox-mediated degradation of different dyes. The Fe3O4/3-MPA-S-S-laccase exhibited notably improved stability toward pH, temperature, organic solvents, and storage periods. The Fe3O4/3-MPA-S-S-laccase exhibited appropriate operational stability while retaining 84.34% of its initial activity after 10 cycles. The catalytic affinity (Kcat/Km) of the immobilized biocatalyst was increased above 10-fold. The experimental data showed remarkable improvement in the dyes’ decolorization using the immobilized biocatalyst in the presence of a redox mediator in seven successive cycles. Thus, the prepared novel nanocomposite-laccase can be applied as an alternative promising strategy for bioremediation of textile wastewater. The cytotoxic level of carboplatin and Fe3O4-NPs singly or in combination on various cell lines was concentration-dependent.
Collapse
|
10
|
Zhou T, Huang X, Zhai T, Ma K, Zhang H, Zhang G. Fabrication of novel three-dimensional Fe 3O 4-based particles electrodes with enhanced electrocatalytic activity for Berberine removal. CHEMOSPHERE 2022; 287:132397. [PMID: 34597640 DOI: 10.1016/j.chemosphere.2021.132397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Reasonable design of three-dimensional (3D) catalytic particle electrodes (CPEs) is crucial for achieving efficient electrocatalytic oxidation of organic pollutants. Herein, the novel Fe3O4/SnO2/GO (FO/SO/GO) particle electrode has been developed and serviced to the 3D electrocatalytic berberine hydrochloride oxidation system with DSA (RuO2-IrO2-SnO2/Ti) electrode as anode and GDE (gas diffusion electrode) electrode as the cathode. Compared with 2D systems and other CPEs, FO/SO/GO electrode shows excellent electrocatalytic activity and remarkable stability for BH removal, that is, the removal rate of BH is 94.8% within 90 min, and the rate constant is 0.03095 min-1. More importantly, after five cycles, the ternary composite still maintains a strong ability to oxidize pollutants. The structural characterization and electrochemical measurement further uncover that the electron transfer ability and electrocatalytic oxidation efficiency are highly dependent on the surface structure regulation of CPEs. Furthermore, the quenching experiments show that hydroxyl radicals are the main active species in the 3D electro-Fenton (EF) system, which can oxidize BH molecules adsorbed on the surface of GO to CO2, H2O, or other products. The results could potentially provide new insights for designing and fabricating more stable and efficient 3D CPEs electrocatalytic removal of organic pollutants in the future.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xingxing Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianjiao Zhai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Hürmüzlü R, Okur M, Saraçoğlu N. Immobilization of Trametes versicolor laccase on chitosan/halloysite as a biocatalyst in the Remazol Red RR dye. Int J Biol Macromol 2021; 192:331-341. [PMID: 34627846 DOI: 10.1016/j.ijbiomac.2021.09.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, the laccase obtained from Trametes versicolor was immobilized onto the chitosan(CTS)/halloysite (HNT) beads. In the immobilization step, the effects of chitosan (1-3% w/v), halloysite (0-2% w/v), glutaraldehyde (0.5-1.5% v/v) and enzyme concentrations (1-3%) on loading and immobilization efficiency were investigated. SEM, FT-IR, XRD, TGA and XPS analyses were performed to examine the structure of beads. In addition, the effects of parameters such as pH (4-10), temperature (25-55 °C), storage life on the activity of free and immobilized laccase were also investigated. The activities of free and immobilized laccase preserved 23% and 56% of its initial activity at the end of 59 days of storage. The effects of mediators such as 2.2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 1-Hydroxybenzotriazole hydrate (HBT), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) and violuric acid (VLA) on the dye removal efficiency were investigated. Reusability of the CTS/HNT/Lac in the presence of HBT and VLA mediators, which enable the highest dye removal, was tested. After 15 cycles, 42% and 54% dye removal were achieved with the CTS/HNT/Lac in the medium containing HBT and VLA, and 42% and 49% of the activity is preserved, respectively. This study showed that CTS/HNT/Lac can be used repeatedly for Remazol Red RR dye removal.
Collapse
Affiliation(s)
- Rüya Hürmüzlü
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey
| | - Mujgan Okur
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey.
| | - Nurdan Saraçoğlu
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey.
| |
Collapse
|
12
|
Ghodake GS, Shinde SK, Saratale GD, Saratale RG, Kim M, Jee SC, Kim DY, Sung JS, Kadam AA. α-Cellulose Fibers of Paper-Waste Origin Surface-Modified with Fe 3O 4 and Thiolated-Chitosan for Efficacious Immobilization of Laccase. Polymers (Basel) 2021; 13:581. [PMID: 33672000 PMCID: PMC7919293 DOI: 10.3390/polym13040581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.
Collapse
Affiliation(s)
- Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (G.S.G.); (S.K.S.); (D.-Y.K.)
| | - Surendra K. Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (G.S.G.); (S.K.S.); (D.-Y.K.)
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea;
| | - Rijuta G. Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea;
| | - Min Kim
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Seung-Cheol Jee
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (G.S.G.); (S.K.S.); (D.-Y.K.)
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea;
| |
Collapse
|