1
|
Jafari A, Majdoub M, Sengottuvelu D, Ucak-Astarlioglu MG, Al-Ostaz A, Nouranian S. Tribological Properties of Synthetic and Biosourced Lubricants Enhanced by Graphene and Its Derivatives: A Review. ACS OMEGA 2024; 9:50868-50893. [PMID: 39758658 PMCID: PMC11696415 DOI: 10.1021/acsomega.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025]
Abstract
This review explores the tribological properties of biosourced lubricants (biolubricants) enhanced by graphene (Gr) and its derivatives and hybrids. Friction and wear at mechanical interfaces are the primary causes of energy loss and machinery degradation, necessitating effective lubrication strategies. Traditional lubricants derived from mineral oils present environmental challenges, leading to an increased interest in biolubricants derived from plant oils and animal fats. Biolubricants offer high biodegradability, renewability, and low toxicity, positioning them as ecofriendly alternatives. This work extensively reviews the role of Gr-based nanoadditives in enhancing the lubrication properties of biolubricants. Gr with its exceptional physicomechanical properties has shown promise in reducing friction and wear. The review covers various Gr derivatives, including Gr oxide (GO) and reduced Gr oxide (r-GO), and their performance as lubrication additives. The discussion extends to Gr hybrids with metals, polymers, and other 2D materials, highlighting their synergistic effects on the tribological performance. The mechanisms through which these additives enhance lubrication, such as the formation of protective films and improved interactions between lubricants and tribopairs, are examined. Emphasis is placed on the environmental benefits and potential performance improvements of Gr-based biolubricants. Finally, by analyzing current research and technological trends, the paper outlines future prospects for optimizing lubricant formulations with Gr-based nanoadditives, aiming for more sustainable and efficient tribological applications.
Collapse
Affiliation(s)
- Aliakbar Jafari
- Department
of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Center
for Graphene Research and Innovation, University
of Mississippi, University, Mississippi 38677, United States
| | - Mohammed Majdoub
- Center
for Graphene Research and Innovation, University
of Mississippi, University, Mississippi 38677, United States
| | - Dineshkumar Sengottuvelu
- Center
for Graphene Research and Innovation, University
of Mississippi, University, Mississippi 38677, United States
| | - Mine G. Ucak-Astarlioglu
- Geotechnical
and Structures Laboratory, U.S. Army Engineer Research and Development
Center, Vicksburg, Mississippi 39180-6199, United States
| | - Ahmed Al-Ostaz
- Center
for Graphene Research and Innovation, University
of Mississippi, University, Mississippi 38677, United States
- Department
of Civil Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Sasan Nouranian
- Department
of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Center
for Graphene Research and Innovation, University
of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Li D, Lu Y, Zhang C. Superhydrophobic and Electrochemical Performance of CF 2-Modified g-C 3N 4/Graphene Composite Film Deposited by PECVD. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4387. [PMID: 36558242 PMCID: PMC9782866 DOI: 10.3390/nano12244387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The physicochemical properties of functional graphene are regulated by compositing with other nano-carbon materials or modifying functional groups on the surface through plasma processes. The functional graphene films with g-C3N4 and F-doped groups were produced by controlling the deposition steps and plasma gases via radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The first principles calculation and electrochemistry characteristic of the functional graphene films were performed on Materials Studio software and an electrochemical workstation, respectively. It is found that the nanostructures of functional graphene films with g-C3N4 and F-doped groups were significantly transformed. The introduction of fluorine atoms led to severe deformation of the g-C3N4 nanostructure, which created gaps in the electrostatic potential of the graphene surface and provided channels for electron transport. The surface of the roving fabric substrate covered by pure graphene is hydrophilic with a static contact angle of 79.4°, but the surface is transformed to a hydrophobic state for the g-C3N4/graphene film with an increased static contact angle of 131.3° which is further improved to 156.2° for CF2-modified g-C3N4/graphene film exhibiting the stable superhydrophobic property. The resistance of the electron movement of CF2-modified g-C3N4/graphene film was reduced by 2% and 76.7%, respectively, compared with graphene and g-C3N4/graphene.
Collapse
Affiliation(s)
- Dayu Li
- Correspondence: (D.L.); (C.Z.)
| | | | | |
Collapse
|
3
|
Recent Advances in Preparation and Testing Methods of Engine-Based Nanolubricants: A State-of-the-Art Review. LUBRICANTS 2021. [DOI: 10.3390/lubricants9090085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reducing power losses in engines is considered a key parameter of their efficiency improvement. Nanotechnology, as an interface technology, is considered one of the most promising strategies for this purpose. As a consumable liquid, researchers have studied nanolubricants through the last decade as potential engine oil. Nanolubricants were shown to cause a considerable reduction in the engine frictional and thermal losses, and fuel consumption as well. Despite that, numerous drawbacks regarding the quality of the processed nanolubricants were discerned. This includes the dispersion stability of these fluids and the lack of actual engine experiments. It has been shown that the selection criteria of nanoparticles to be used as lubricant additives for internal combustion engines is considered a complex process. Many factors have to be considered to investigate and follow up with their characteristics. The selection methodology includes tribological and rheological behaviours, thermal stability, dispersion stability, as well as engine performance. Through the last decade, studies on nanolubricants related to internal combustion engines focused only on one to three of these factors, with little concern towards the other factors that would have a considerable effect on their final behaviour. In this review study, recent works concerning nanolubricants are discussed and summarized. A complete image of the designing parameters for this approach is presented, to afford an effective product as engine lubricant.
Collapse
|