1
|
Brunchi CE, Morariu S. Laponite ®-From Dispersion to Gel-Structure, Properties, and Applications. Molecules 2024; 29:2823. [PMID: 38930887 PMCID: PMC11206873 DOI: 10.3390/molecules29122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Laponite® (LAP) is an intensively studied synthetic clay due to the versatility given by its layered structure, which makes it usable in various applications. This review describes the multifaceted properties and applications of LAP in aqueous dispersions and gel systems. The first sections of the review discuss the LAP structure and the interactions between clay discs in an aqueous medium under different conditions (such as ionic strength, pH, temperature, and the addition of polymers) in order to understand the function of clay in tailoring the properties of the designed material. Additionally, the review explores the aging phenomenon characteristic of LAP aqueous dispersions as well as the development of shake-gels by incorporating LAP. The second part shows the most recent studies on materials containing LAP with possible applicability in the drilling industry, cosmetics or care products industry, and biomedical fields. By elucidating the remarkable versatility and ease of integration of LAP into various matrices, this review underscores its significance as a key ingredient for the creation of next-generation materials with tailored functionalities.
Collapse
Affiliation(s)
| | - Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| |
Collapse
|
2
|
Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnology 2022; 20:485. [PMCID: PMC9675272 DOI: 10.1186/s12951-022-01698-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, tumor treatments are characterized by intelligence, diversity and personalization, but the therapeutic reagents used are often limited in clinical efficacy due to problems with water solubility, targeting, stability and multidrug resistance. To remedy these shortcomings, the application of multifunctional nanotechnology in the biomedical field has been widely studied. Synthetic melanin nanoparticles (MNPs) surfaces which contain highly reactive chemical groups such as carboxyl, hydroxyl and amine groups, can be used as a reaction platform on which to graft different functional components. In addition, MNPs easily adhere to substrate surface, and serve as a secondary reaction platform to modify it. The multifunctionality and intrinsic biocompatibility make melanin-like nanoparticles promising as a multifunctional and powerful nanoplatform for oncological applications. This paper first reviews the preparation methods, polymerization mechanisms and physicochemical properties of melanin including natural melanin and chemically synthesized melanin to guide scholars in MNP-based design. Then, recent advances in MNPs especially synthetic polydopamine (PDA) melanin for various medical oncological applications are systematically and thoroughly described, mainly focusing on bioimaging, photothermal therapy (PTT), and drug delivery for tumor therapy. Finally, based on the investigated literature, the current challenges and future directions for clinical translation are reasonably discussed, focusing on the innovative design of MNPs and further elucidation of pharmacokinetics. This paper is a timely and comprehensive and detailed study of the progress of MNPs in tumor therapy, especially PTT, and provides ideas for the design of personalized and customizable oncology nanomedicines to address the heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Luyao Tian
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Xia Li
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Haixia Ji
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Qing Yu
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Mingjuan Yang
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Lanping Guo
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wenyuan Gao
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| |
Collapse
|
3
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
4
|
Arjama M, Mehnath S, Jeyaraj M. Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. Int J Biol Macromol 2022; 213:435-446. [PMID: 35661669 DOI: 10.1016/j.ijbiomac.2022.05.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The shape and responsiveness of nanoengineered delivery carriers are crucial characteristics for the rapid and efficient delivery of therapeutics. We report on a novel type of micrometer-sized hydrogel particles of controlled shape with dual pH and redox sensitivity for intracellular delivery of anticancer drugs and phototherapy. The cubical HA-DOP-CS-PEG networks with disulfide links are obtained by cross-linking HA-DOP-CS-PEG with cystamine. The pH-triggered hydrogel swelling/shrinkage was not only affords effective doxorubicin release. It also actively provides the endosomal/lysosomal escape, redox-triggered drug release. The hydrogels degrade rapidly to low molecular weight chains in the presence of the typical intracellular concentration of glutathione. Drug-loaded cube particles found to be 12% more cytotoxic. ICG and DOX-loaded hydrogel cubes demonstrate 90% cytotoxicity when incubated with MCF-7 cancer cells for 24 and 48 h, respectively. This approach integrates the advantages of pH sensitivity, enzymatic degradation, and shape-regulated internalization for novel types of "intelligent" three-dimensional networks with programmable behavior for controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
5
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
6
|
Melo BL, Lima-Sousa R, Alves CG, Moreira AF, Correia IJ, de Melo-Diogo D. Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and resveratrol for breast cancer chemo-photothermal therapy. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ostańska E, Barnaś E, Bartusik-Aebisher D, Dynarowicz K, Szpunar M, Skręt-Magierło J, Aebisher D. Histopathological Analysis of the Effect of Photodynamic Action on Post-Chemotherapy Excised Breast Cancer Tissue. Medicina (B Aires) 2022; 58:medicina58060700. [PMID: 35743961 PMCID: PMC9228729 DOI: 10.3390/medicina58060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Breast cancer is the most commonly diagnosed cancer in women and its mortality is increasing. Therefore, research to improve treatment is of paramount importance. One method of treatment is photodynamic therapy. Photodynamic therapy selectively stimulates apoptosis in photosensitizer-treated neoplastic breast cells as a result of cytotoxic singlet oxygen generation via collisions between triplet excited state photosensitizer and triplet ground state oxygen upon tissue irradiation. The aim of this study was to evaluate the effects of photodynamic action on cancerous breast tissue samples as a model of photodynamic therapy. Materials and Methods: Breast cancer tissue samples were obtained from post-operative material and the patterns of histopathological changes in breast cancer tissue before and after photodynamic action on post-chemotherapy tissue were evaluated. Excised tissue samples were obtained from 48 female breast cancer patients who had previously undergone chemotherapy. Breast cancer tissues for this study were taken from macroscopically visible tumors larger than 10 mm. Histopathological analysis was performed to evaluate any morphological changes prior to and after photodynamic action on the post-chemotherapy tissue samples. Eighteen breast cancer tissue samples were analyzed before chemotherapy, fifteen after chemotherapy, and fifteen samples were analyzed after chemotherapy and application of photodynamic action. The photosensitizer Rose Bengal was applied to the samples subjected to photodynamic action. Results: Photodynamic action on post-chemotherapy neoplastic tissue showed histological changes under a light microscope. The results showed that morphological changes in breast cancer tissues after chemotherapy and photodynamic action were dependent on the concentration of Rose Bengal. In all cases, follow-up imaging showed tumor shrinkage of an average of 35% from baseline size. Conclusions: Histopathological examination revealed photosensitizer-concentration-dependent changes after photodynamic action in excised post-chemotherapy tissue. The effects of photodynamic action observed in this study suggest that the application of photodynamic therapy after chemotherapy can aid in breast cancer cell eradication.
Collapse
Affiliation(s)
- Elżbieta Ostańska
- Clinical Department of Pathology, Frederick Chopin Clinical Provincial Hospital No. 1, 35-055 Rzeszów, Poland;
| | - Edyta Barnaś
- Department of Midwifery, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland; (E.B.); (J.S.-M.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Magdalena Szpunar
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Joanna Skręt-Magierło
- Department of Midwifery, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland; (E.B.); (J.S.-M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| |
Collapse
|
8
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
9
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
10
|
Wang J, Sun L, Liu J, Sun B, Li L, Xu ZP. Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. J Nanobiotechnology 2021; 19:351. [PMID: 34717639 PMCID: PMC8557519 DOI: 10.1186/s12951-021-01096-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multi-modal therapy has attracted increasing attention as it provides enhanced effectiveness and potential stimulation of the immune community. However, low accumulation at the tumor sites and quick immune clearance of the anti-tumor agents are still insurmountable challenges. Hypothetically, cancer cell membrane (CCM) can homologously target the tumor whereas multi-modal therapy can complement the disadvantages of singular therapies. Meanwhile, moderate hyperthermia induced by photothermal therapy can boost the cellular uptake of therapeutic agents by cancer cells. RESULTS CCM-cloaked indocyanine green (ICG)-incorporated and abraxane (PTX-BSA)-loaded layered double hydroxide (LDH) nanosheets (LIPC NSs) were fabricated for target efficient photo-chemotherapy of colorectal carcinoma (CRC). The CCM-cloaked LDH delivery system showed efficient homologous targeting and cytotoxicity, which was further enhanced under laser irradiation to synergize CRC apoptosis. On the other hand, CCM-cloaking remarkably reduced the uptake of LDH NSs by HEK 293T cells and macrophages, implying mitigation of the side effects and the immune clearance, respectively. In vivo data further exhibited that LIPC NSs enhanced the drug accumulation in tumor tissues and significantly retarded tumor progression under laser irradiation at very low therapeutic doses (1.2 and 0.6 mg/kg of ICG and PTX-BSA), without observed side effects on other organs. CONCLUSIONS This research has demonstrated that targeting delivery efficiency and immune-escaping ability of LIPC NSs are tremendously enhanced by CCM cloaking for efficient tumor accumulation and in situ generated hyperthermia boosts the uptake of LIPC NSs by cancer cells, a potential effective way to improve the multi-modal cancer therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Zhong H, Huang P, Yan P, Chen P, Shi Q, Zhao Z, Chen J, Shu X, Wang P, Yang B, Zhou Z, Chen J, Pang J, Tu Y, Liu L, Zhang X. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2100770. [PMID: 34190424 DOI: 10.1002/adhm.202100770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Indexed: 11/05/2022]
Abstract
The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.
Collapse
Affiliation(s)
- Hao Zhong
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Pei‐Ying Huang
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ping Yan
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Pei‐Ling Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Qun‐Yin Shi
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ze‐An Zhao
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Jing‐Xuan Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Xian Shu
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Ping Wang
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Bin Yang
- Department of Biomedical Engineering School of Basic Medical Science Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zheng‐Zheng Zhou
- School of Public Health Southern Medical University Guangzhou 510515 P. R. China
| | - Jian‐Jun Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Jian‐Xin Pang
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ying‐Feng Tu
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Li‐Han Liu
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
12
|
Lee YH, Kuo PW, Chen CJ, Sue CJ, Hsu YF, Pan MC. Indocyanine Green-Camptothecin Co-Loaded Perfluorocarbon Double-Layer Nanocomposite: A Versatile Nanotheranostics for Photochemotherapy and FDOT Diagnosis of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091499. [PMID: 34575572 PMCID: PMC8466706 DOI: 10.3390/pharmaceutics13091499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer and is the leading cause of neoplastic disease burden for females worldwide, suggesting that effective therapeutic and/or diagnostic strategies are still urgently needed. In this study, a type of indocyanine green (ICG) and camptothecin (CPT) co-loaded perfluorocarbon double-layer nanocomposite named ICPNC was developed for detection and photochemotherapy of breast cancer. The ICPNCs were designed to be surface modifiable for on-demand cell targeting and can serve as contrast agents for fluorescence diffuse optical tomography (FDOT). Upon near infrared (NIR) irradiation, the ICPNCs can generate a significantly increased production of singlet oxygen compared to free ICG, and offer a comparable cytotoxicity with reduced chemo-drug dosage. Based on the results of animal study, we further demonstrated that the ICPNCs ([ICG]/[CPT] = 40-/7.5-μM) in association with 1-min NIR irradiation (808 nm, 6 W/cm2) can provide an exceptional anticancer effect to the MDA-MB-231 tumor-bearing mice whereby the tumor size was significantly reduced by 80% with neither organ damage nor systemic toxicity after a 21-day treatment. Given a number of aforementioned merits, we anticipate that the developed ICPNC is a versatile theranostic nanoagent which is highly promising to be used in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| | - Po-Wei Kuo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chun-Ju Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chu-Jih Sue
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Ya-Fen Hsu
- Department of Surgery, Landseed International Hospital, Taoyuan City 324609, Taiwan;
| | - Min-Chun Pan
- Department of Mechanical Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| |
Collapse
|