1
|
Abdulla II NS, Fernandez MJF, Baptayev B, Balanay MP. Unlocking the Luminescent Potential of Fish-Scale-Derived Carbon Nanoparticles for Multicolor Conversion. Int J Mol Sci 2024; 25:10929. [PMID: 39456712 PMCID: PMC11507599 DOI: 10.3390/ijms252010929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study introduces a novel approach to addressing environmental issues by developing fish-scale carbon nanoparticles (FSCNPs) with a wide range of colors from discarded fish scales. The process involves hydrothermally synthesizing raw tamban (Sardinella) fish scales sourced from Universal Canning, Inc. in Zamboanga City, Philippines. The optimization of the synthesis was achieved using the response surface methodology with a Box-Behnken design. The resulting FSCNPs exhibited unique structural and chemical properties akin to carbonized polymer dots, enhancing their versatility. The solid-state fluorescence of these nanoparticles can be modulated by varying their concentration in a polyvinylpyrrolidone matrix, yielding colors such as blue, green, yellow, and red-orange with Commission Internationale de l'Eclairage coordinates of (0.23, 0.38), (0.32, 0.43), (0.37, 0.43), and (0.46, 0.48), respectively. An analysis of the luminescence mechanism highlights cross-linking emissions, aggregation-induced emissions, and non-covalent interactions, which contribute to concentration-dependent fluorescence and tunable emission colors. These optical characteristics suggest that FSCNPs have significant potential for diverse applications, particularly in opto-electronic devices.
Collapse
Affiliation(s)
- Najeeb S. Abdulla II
- Chemistry Department, Western Mindanao State University, Zamboanga City 7000, Philippines;
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Marvin Jose F. Fernandez
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Bakhytzhan Baptayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan;
| | - Mannix P. Balanay
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan;
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Kaur I, Batra V, Bogireddy NK, Baveja J, Kumar Y, Agarwal V. Chemical- and green-precursor-derived carbon dots for photocatalytic degradation of dyes. iScience 2024; 27:108920. [PMID: 38352227 PMCID: PMC10863327 DOI: 10.1016/j.isci.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Rapid industrialization and untreated industrial effluents loaded with toxic and carcinogenic contaminants, especially dyes that discharge into environmental waters, have led to a rise in water pollution, with a substantial adverse impact on marine life and humankind. Photocatalytic techniques are one of the most successful methods that help in degradation and/or removal of such contaminants. In recent years, semiconductor quantum dots are being substituted by carbon dots (CDs) as photocatalysts, due to the ease of formation, cost-effectiveness, possible sustainability and scalability, much lower toxicity, and above all its high capacity to harvest sunlight (UV, visible, and near infrared) through electron transfer that enhances the lifetime of the photogenerated charge carriers. A better understanding between the properties of the CDs and their role in photocatalytic degradation of dyes and contaminants is required for the formation of controllable structures and adjustable outcomes. The focus of this review is on CDs and its composites as photocatalysts obtained from different sustainable green as well as chemical precursors. Apart from the synthesis, characterization, and properties of the CDs, the study also highlights the effect of different parameters on the photocatalytic properties of CDs and their composites for catalytic dye degradation mechanisms in detail. Besides the present research development in the field, potential challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Inderbir Kaur
- Department of Electronic Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Vandana Batra
- Department of Physics, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | | | - Jasmina Baveja
- Invited Researcher at Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Y. Kumar
- Departamento de Fisico Matematica, UANL, Monterrey, Mexico
| | - V. Agarwal
- Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
3
|
Dubey P. An overview on animal/human biomass-derived carbon dots for optical sensing and bioimaging applications. RSC Adv 2023; 13:35088-35126. [PMID: 38046631 PMCID: PMC10690874 DOI: 10.1039/d3ra06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Over the past decade, carbon dots (CDs) have emerged as some of the extremely popular carbon nanostructures for diverse applications. The advantages of sustainable CDs, characterized by their exceptional photoluminescence (PL), high water solubility/dispersibility, non-toxicity, and biocompatibility, substantiate their potential for a wide range of applications in sensing and biology. Moreover, nature offers plant- and animal-derived precursors for the sustainable synthesis of CDs and their doped variants. These sources are not only readily accessible, inexpensive, and renewable but are also environmentally benign green biomass. This review article presents in detail the production of sustainable CDs from various animal and human biomass through bottom-up synthetic methods, including hydrothermal, microwave, microwave-hydrothermal, and pyrolysis methods. The resulting CDs exhibit a uniform size distribution, possibility of heteroatom doping, surface passivation, and remarkable excitation wavelength-dependent/independent emission and up-conversion PL characteristics. Consequently, these CDs have been successfully utilized in multiple applications, such as bioimaging and the detection of various analytes, including heavy metal ions. Finally, a comprehensive assessment is presented, highlighting the prospects and challenges associated with animal/human biomass-derived CDs for multifaceted applications.
Collapse
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
4
|
Huang S, Li B, Mu P, Zhang W, Liu Y, Xiao Q. Highly sensitive detection of microRNA-21 by nitrogen-doped carbon dots-based ratio fluorescent probe via nuclease-assisted rolling circle amplification strategy. Anal Chim Acta 2023; 1273:341533. [PMID: 37423665 DOI: 10.1016/j.aca.2023.341533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Highly sensitive and selective detection of microRNA-21 (miRNA-21) in biological samples is critical for the disease diagnosis and cancer treatment. In this study, a nitrogen-doped carbon dots (N-CDs)-based ratio fluorescence sensing strategy was constructed for miRNA-21 detection with high sensitivity and excellent specificity. Bright-blue N-CDs (λex/λem = 378 nm/460 nm) were synthesized by facile one-step microwave-assisted pyrolysis method by using uric acid as the single precursor, and the absolute fluorescence quantum yield and fluorescence lifetime of N-CDs were 35.8% and 5.54 ns separately. The padlock probe hybridized with miRNA-21 firstly and then was cyclized by T4 RNA ligase 2 to form a circular template. At the present of dNTPs and phi29 DNA polymerase, the oligonucleotide sequence in miRNA-21 was prolonged to hybridize with the surplus oligonucleotide sequences in circular template, generating long and reduplicated oligonucleotide sequences containing abundant guanine nucleotides. Separate G-quadruplex sequences were generated after the addition of Nt.BbvCI nicking endonuclease, and then hemin bound with G-quadruplex sequence to construct the G-quadruplex DNAzyme. Such G-quadruplex DNAzyme catalyzed the redox reaction of o-phenylenediamine (OPD) with H2O2, finally producing the yellowish-brown 2,3-diaminophenazine (DAP) (λem = 562 nm). Due to the inner filter effect between N-CDs and DAP, the ratio fluorescence signal of DAP with N-CDs was utilized for sensitive detection of miRNA-21 with detection limit of 0.87 pM. Such approach has practical feasibility and excellent specificity for miRNA-21 analysis during highly homological miRNA family in HeLa cell lysates and human serum samples.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
5
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
6
|
Xu C, Xiao X, Cai C, Cheng Q, Zhu L, Zhang J, Wei B, Wang H. Insight into the differences in carbon dots prepared from fish scales using conventional hydrothermal and microwave methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54616-54627. [PMID: 36881236 DOI: 10.1007/s11356-023-26275-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The preparation of carbon dots (CDs) from waste fish scales is an attractive and high-value transformation. In this study, fish scales were used as a precursor to prepare CDs, and the effects of hydrothermal and microwave methods on their fluorescence properties and structures were evaluated. The microwave method was more conducive to the self-doping of nitrogen due to rapid and uniform heating. However, the low temperature associated with the microwave method resulted in insufficient dissolution of the organic matter in the fish scales, resulting in incomplete dehydration and condensation and the formation of nanosheet-like CDs, whose emission behavior had no significant correlation with excitation. Although the CDs prepared using the conventional hydrothermal method showed lower nitrogen doping, the relative pyrrolic nitrogen content was higher, which was beneficial in improving their quantum yield. Additionally, the controllable high temperature and sealed environment used in the conventional hydrothermal method promoted dehydration and condensation of the organic matter in the fish scales to form CDs with a higher degree of carbonization, uniform size, and higher C = O/COOH content. CDs prepared using the conventional hydrothermal method exhibited higher quantum yields and excitation wavelength-dependent emission behavior.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China
| | - Xiao Xiao
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chaonan Cai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Qunpeng Cheng
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China
| | - Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China
| | - Haibo Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Campalani C, Bragato N, Morandini A, Selva M, Fiorani G, Perosa A. Carbon Dots as Green Photocatalysts for Atom Transfer Radical Polymerization of Methacrylates. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
8
|
Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023. [DOI: 10.3390/catal13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbon dots (CDs) have attracted considerable interest from the scientific community due to their exceptional properties, such as high photoluminescence, broadband absorption, low toxicity, water solubility and (photo)chemical stability. As a result, they have been applied in several fields, such as sensing, bioimaging, artificial lighting and catalysis. In particular, CDs may act as sole photocatalysts or as part of photocatalytic nanocomposites. This study aims to provide a comprehensive review on the use of CDs as sole photocatalysts in the areas of hydrogen production via water splitting, photodegradation of organic pollutants and photoreduction and metal removal from wastewaters. Furthermore, key limitations preventing a wider use of CDs as photocatalysts are pointed out. It is our hope that this review will serve as a basis on which researchers may find useful information to develop sustainable methodologies for the synthesis and use of photocatalytic CDs.
Collapse
|
9
|
Na K. Designed Synthesis of Nanostructured Materials as the Heterogeneous Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4374. [PMID: 36558228 PMCID: PMC9787531 DOI: 10.3390/nano12244374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development of nanoscale syntheses and innovative characterization tools resulted in the tailored design of nanostructured materials with versatile abilities in many applications [...].
Collapse
Affiliation(s)
- Kyungsu Na
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Campalani C, Causin V, Selva M, Perosa A. Fish-Waste-Derived Gelatin and Carbon Dots for Biobased UV-Blocking Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35148-35156. [PMID: 35877809 PMCID: PMC9354012 DOI: 10.1021/acsami.2c11749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The fish industry produces every year huge amounts of waste that represent an underutilized source of chemical richness. In this contribution, type I collagen was extracted from the scales of Mugil cephalus and carbon dots (CDs) were synthesized from the scales of Dicentrarchus labrax. These materials were combined to make hybrid films with UV-blocking ability, by casting a mixture of gelatin, glycerol (15%), and CDs (0, 1, 3, and 5%). The films were fully characterized from the mechanical, morphological, and optical point of view. Here, 40 μm thick films were obtained, characterized by a high water solubility (70%); moreover, the presence of CDs improved the film mechanical properties, in particular increasing the tensile strength (TS) up to 17 MPa and elongation at break (EAB) up to 40%. The CDs also modulated water vapor permeability and the thermal stability of the films. From the optical point of view, with just 5% loading of CDs the films blocked almost 70% of the UV radiation with negligible change in transparency (88.6% for the nonloaded vs 84.4% for 5% CDs) and opacity (1.32 for nonloaded vs 1.61 for 5% CDs). These types of hybrid biobased films hold promise for the production of sustainable UV-shields both for human health and for prolonging the shelf life of food.
Collapse
Affiliation(s)
- Carlotta Campalani
- Department
of Molecular Sciences and Nanosystems, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Valerio Causin
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| | - Maurizio Selva
- Department
of Molecular Sciences and Nanosystems, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Alvise Perosa
- Department
of Molecular Sciences and Nanosystems, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
| |
Collapse
|
11
|
Cailotto S, Massari D, Gigli M, Campalani C, Bonini M, You S, Vomiero A, Selva M, Perosa A, Crestini C. N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS OMEGA 2022; 7:4052-4061. [PMID: 35155899 PMCID: PMC8829871 DOI: 10.1021/acsomega.1c05403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 05/09/2023]
Abstract
The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
Collapse
Affiliation(s)
- Simone Cailotto
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Daniele Massari
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Matteo Gigli
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Carlotta Campalani
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Massimo Bonini
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Shujie You
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Alberto Vomiero
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- Division
of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maurizio Selva
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Alvise Perosa
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Claudia Crestini
- Department
of Molecular Sciences and Nanosystems, Ca’Foscari
University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
- CSGI
− Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
12
|
Mahle R, Kumbhakar P, Nayar D, Narayanan TN, Kumar Sadasivuni K, Tiwary CS, Banerjee R. Current advances in bio-fabricated quantum dots emphasising the study of mechanisms to diversify their catalytic and biomedical applications. Dalton Trans 2021; 50:14062-14080. [PMID: 34549221 DOI: 10.1039/d1dt01529j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots (QDs), owing to their single atom-like electronic structure due to quantum confinement, are often referred to as artificial atoms. This unique physical property results in the diverse functions exhibited by QDs. A wide array of applications have been achieved by the surface functionalization of QDs, resulting in exceptional optical, antimicrobial, catalytic, cytotoxic and enzyme inhibition properties. Ordinarily, traditionally prepared QDs are subjected to post synthesis functionalization via a variety of methods, such as ligand exchange or covalent and non-covalent conjugation. Nevertheless, solvent toxicity, combined with the high temperature and pressure conditions during the preparation of QDs and the low product yield due to multiple steps in the functionalization, limit their overall use. This has driven scientists to investigate the development of greener, environmental friendly and cost-effective methods that can circumvent the complexity and strenuousness associated with traditional processes of bio-functionalization. In this review, a detailed analysis of the methods to bio-prepare pre-functionalized QDs, with elucidated mechanisms, and their application in the areas of catalysis and biomedical applications has been conducted. The environmental and health and safety aspects of the bio-derived QDs have been briefly discussed to unveil the future of nano-commercialization.
Collapse
Affiliation(s)
- Reddhy Mahle
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Rintu Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| |
Collapse
|