1
|
Salam AA, Ebrahim S, Soliman M, Shokry A. Preparation of silver nanowires with controlled parameters for conductive transparent electrodes. Sci Rep 2024; 14:20986. [PMID: 39251688 PMCID: PMC11385216 DOI: 10.1038/s41598-024-70789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Silver nanowires (AgNWs) have excellent flexibility, unique optical transmittance and high conductivity. The polyol process is appropriate for preparing AgNWs due to its simplicity, effectiveness, low cost, and high yield. This work aims to investigate the effect of preparation parameters of the polyol process on the silver nanowires properties. The parameters include the controlling agent, molecular weight of the polyvinylpyrrolidone (PVP), the temperature, and the reducing agent. The amount of silver nanoparticles formed during preparation was used to determine the optimum preparation conditions. The transmission electron microscope (TEM) images showed minimal amount of Ag nanoparticles when using mixed molecular weight of PVP-40K, and PVP-1.3M at 150 °C with the assistance of copper chloride as a controlling agent. The prepared AgNWs had an average length of 3.7 µm and aspect ratio of 15.3. The fabricated electrodes were characterized using a scanning electron microscope (SEM) and four probe resistivity measurements. The electrical measurement of the AgNWs electrodes indicated that the surfactant thickness is a critical parameter in having low sheet resistance electrodes. Also, the optical transmission was affected by the amount of nanoparticles. The prepared electrode with high concentration of AgNWs and a minimal amount of nanoparticles exhibited 80% optical transmission.
Collapse
Affiliation(s)
- Ahmed Abdel Salam
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Shaker Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Moataz Soliman
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Azza Shokry
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt.
| |
Collapse
|
2
|
Thomas N, S B, Mathew Koshy A, Basavaraj MG, Swaminathan P. Investigating the optical and electrical performance of rod coated silver nanowire-based transparent conducting films. NANOTECHNOLOGY 2024; 35:465602. [PMID: 39163876 DOI: 10.1088/1361-6528/ad7142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Silver nanowires (Ag NWs) are highly promising building blocks for developing transparent conducting films (TCFs) due to their high electrical conductivity and good optical transparency. The large-scale production of Ag NW-based high-quality TCFs using low-cost processing methods can replace the traditional oxide based TCFs. Therefore, developing a reliable technique for large-scale fabrication of Ag NW-based TCFs is vital. This work involves the synthesis of Ag NWs, the fabrication of large-area Ag NW-based TCFs using a simple rod coating process, its optimization, and the performance analysis of the fabricated TCFs, including their demonstration as transparent heaters. The polyol synthesis method produces Ag NWs of lengths ranging from 25-110µm and diameters from 80-180 nm. The effect of Ag NW length, the number of coating passes, and the volume of the NW dispersion used per coating pass on the electrical and optical properties of the TCFs are studied by quantifying sheet resistance(Rs)and transmittance (T) of the film. The performance of the fabricated film is evaluated by estimating the figure of merit (FoM) in both percolative and bulk regimes. The TCF made with NWs of length 25.7µm and diameter 85.1 nm had the largest value of bulk FoM (101.3), percolative FoM (43.9), and, conductivity exponent (0.6). This elucidated the superior performance of the fabricated TCFs over those fabricated by other techniques. The critical thickness of the film (tmin), at the crossover between the percolation and bulk, scales with the shortest dimension of the NW, namely its diameter. The percolative FoM showed an increase, with a decrease in both sheet resistance and diameter of the NWs, with lowern. The fabricated TCF is tested as a transparent heater and the demonstration proves that rod coated Ag NW-based TCFs can be used for transparent electrode applications.
Collapse
Affiliation(s)
- Neethu Thomas
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Bharathkumar S
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Aarju Mathew Koshy
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloidal Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Parasuraman Swaminathan
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
- Surface Engineering Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
4
|
Darabi NH, Kalaee M, Mazinani S, Khajavi R. GO/AgNW aided sustained release of ciprofloxacin loaded in Starch/PVA nanocomposite mats for wound dressings application. Int J Biol Macromol 2024; 266:130977. [PMID: 38513893 DOI: 10.1016/j.ijbiomac.2024.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/01/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Compared to conventional bandages, which do not meet all wound care requirements, nanofiber wound dressings could provide a potentially excellent environment for healing. In the present research, nanocomposite membrane based on starch (St) - polyvinyl alcohol (PVA) nanofibers containing ciprofloxacin antibiotic drug loaded on graphene oxide‑silver nanowire (GO-AgNWs) hybrid nanoparticles is produced by electrospinning process. Morphological studies showed that the length and diameter of silver nanowires are 21 ± 9.17 μm and 82 ± 10.52 nm, respectively. The contact angle of 57.1° due to the hydrophilic nature of nanofibers, also the swelling degree of 679.51 % and, the water vapor permeability of 2627 ± 56 (g/m2.day) can be expressed as a confirmation of the ability of this wound dressing to manage secretions around the wound. In evaluating the antibacterial activity of these nanocomposite membranes against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, the most potent antibacterial effect is in the case of nanofibers containing a high percentage of starch and nanoparticles carrying ciprofloxacin; with non-growth halos of 47.58 mm and 22.06 mm was recorded. The release of ciprofloxacin drug in vitro was reported to be 61.69 % during 24 h, and the final release rate was 82.17 %. Despite the biocompatibility and cell viability of 97.74 % and the biodegradability rate of 28.51 %, the StP-GOAgNWCip nanocomposite membrane can be introduced as a suitable candidate for wound dressing.
Collapse
Affiliation(s)
- Negar Hosseini Darabi
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran
| | - Mohammadreza Kalaee
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. BOX 11365-4435, Tehran, Iran.
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, P.O. BOX 15875-4413, Tehran, Iran
| | - Ramin Khajavi
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran
| |
Collapse
|
5
|
Damerchi E, Oras S, Butanovs E, Liivlaid A, Antsov M, Polyakov B, Trausa A, Zadin V, Kyritsakis A, Vidal L, Mougin K, Pikker S, Vlassov S. Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:435-446. [PMID: 38711582 PMCID: PMC11070972 DOI: 10.3762/bjnano.15.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto specially patterned silicon wafers so that some NWs were partially suspended over the holes in the substrate. Then, we performed a series of heat-treatment experiments and found that adhered and suspended parts of NWs behave differently under the heat treatment. Moreover, depending on the heat-treatment process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations.
Collapse
Affiliation(s)
- Elyad Damerchi
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Sven Oras
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Edgars Butanovs
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Allar Liivlaid
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mikk Antsov
- Estonian Military Academy, Riia 12, 51010 Tartu, Estonia
| | - Boris Polyakov
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Annamarija Trausa
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Veronika Zadin
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Andreas Kyritsakis
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Loïc Vidal
- Institute of Materials Science of Mulhouse, CNRS – UMR 7361, University of Haute-Alsace, France
| | - Karine Mougin
- Institute of Materials Science of Mulhouse, CNRS – UMR 7361, University of Haute-Alsace, France
| | - Siim Pikker
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Sergei Vlassov
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| |
Collapse
|
6
|
Zhang Z, Li Q, Xu L, Tian W, Li Z. High-Performance Flexible Temperature Sensors Based on Laser-Irradiated Ag-MWCNTs/PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6078-6087. [PMID: 38285619 DOI: 10.1021/acsami.3c15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Recently, flexible temperature sensors have attracted significant interest due to their wide-ranging applications in areas such as biomedical monitoring, environmental monitoring, electronic skin, and intelligent robots. However, a combination of high sensitivity and high resolution remains a critical challenge. These properties depend on the synthesis techniques of the sensitive materials. In this work, we use a laser irradiation method to prepare a silver nanoparticle-modified carbon nanotube (Ag-MWCNT) which is further mixed with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). The developed temperature sensor exhibited a high sensitivity of -0.45% °C-1 and linearity with an R2 value of 0.998 in the temperature range of 25-80 °C. Additionally, the sensor demonstrated remarkable repeatability, making it suitable for real-time temperature monitoring of the human body and environment. This temperature sensor is successfully demonstrated in practical applications such as monitoring the temperature of various parts of the human body and sensing the spatial temperature. These demonstrations highlight their significant potential in electronic skin and other related fields.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingchun Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lizhi Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhuai Tian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhipeng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Wang C, Zhang N, Liu C, Ma B, Zhang K, Li R, Wang Q, Zhang S. New Advances in Antenna Design toward Wearable Devices Based on Nanomaterials. BIOSENSORS 2024; 14:35. [PMID: 38248412 PMCID: PMC10813296 DOI: 10.3390/bios14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Wearable antennas have recently garnered significant attention due to their attractive properties and potential for creating lightweight, compact, low-cost, and multifunctional wireless communication systems. With the breakthrough progress in nanomaterial research, the use of lightweight materials has paved the way for the widespread application of wearable antennas. Compared with traditional metallic materials like copper, aluminum, and nickel, nanoscale entities including zero-dimensional (0-D) nanoparticles, one-dimensional (1-D) nanofibers or nanotubes, and two-dimensional (2-D) nanosheets exhibit superior physical, electrochemical, and performance characteristics. These properties significantly enhance the potential for constructing durable electronic composites. Furthermore, the antenna exhibits compact size and high deformation stability, accompanied by greater portability and wear resistance, owing to the high surface-to-volume ratio and flexibility of nanomaterials. This paper systematically discusses the latest advancements in wearable antennas based on 0-D, 1-D, and 2-D nanomaterials, providing a comprehensive overview of their development and future prospects in the field.
Collapse
Affiliation(s)
- Chunge Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
| | - Ning Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Bangbang Ma
- Ningbo L.K. Technology Co., Ltd., Ningbo 315100, China;
| | - Keke Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004, China
| | - Rongzhi Li
- Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Qianqian Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
| | - Sheng Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| |
Collapse
|
8
|
Rich J, Cole B, Li T, Lu B, Fu H, Smith BN, Xia J, Yang S, Zhong R, Doherty JL, Kaneko K, Suzuki H, Tian Z, Franklin AD, Huang TJ. Aerosol jet printing of surface acoustic wave microfluidic devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:2. [PMID: 38169478 PMCID: PMC10757899 DOI: 10.1038/s41378-023-00606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 01/05/2024]
Abstract
The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brian Cole
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hanyu Fu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brittany N. Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - James L. Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Kanji Kaneko
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Hiroaki Suzuki
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Aaron D. Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
- Department of Chemistry, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
9
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
10
|
Thomas N, Sharma N, Swaminathan P. Optimizing silver nanowire dimensions by the modification of polyol synthesis for the fabrication of transparent conducting films. NANOTECHNOLOGY 2023; 35:055602. [PMID: 37890475 DOI: 10.1088/1361-6528/ad07a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Transparent conducting films (TCFs) made by the assembly/deposition of silver nanowires (Ag NWs) are widely used to manufacture flexible electronics such as touch screens, heaters, displays, and organic light-emitting diodes. Controlling the dimensions (length and diameter) of the nanowires is key in obtaining TCFs with the desired optoelectronic properties, namely sheet resistance and optical transparency. This work describes a combined experimental and theoretical investigation on the optimization of the NW dimensions to fabricate high-quality TCFs. Ag NWs of different dimensions are synthesized by the modified polyol method and the average diameter and length of the wires are tailored over a wide range, 35-150 nm and 12-130μm respectively, by controlling the synthesis parameters such as reaction conditions, stabilizing agents, and growth promoters. The synthesized NWs are spin coated on glass substrates to form TCFs. Comparing the films with different lengths, but identical diameters, enabled the quantification of the effect of length on the optoelectronic properties of the TCFs. Similarly, the effect of NW diameter is also studied. A non-uniformity factor is defined to evaluate the uniformity of the TCF and the transmittance of the NW network is shown to be inversely proportional to its area coverage. The sheet conductance versus the normalized number density is plotted for the different concentrations of NWs to extract a conductivity exponent that agrees well with the theoretical predictions. For thin film networks, the relation between the transmittance and sheet resistance provides the percolative figure of merit (FoM) as a fitting parameter. A large FoM is desirable for a good-performing TCF and the synthesis conditions to achieve this are optimized.
Collapse
Affiliation(s)
- Neethu Thomas
- Electronic Materials and Thin Films Lab Dept. of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Neha Sharma
- Electronic Materials and Thin Films Lab Dept. of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- AMOLED research center, Dept. of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Parasuraman Swaminathan
- Electronic Materials and Thin Films Lab Dept. of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Ceramics Technologies Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
11
|
Kim MJ. A Study on Optimal Indium Tin Oxide Thickness as Transparent Conductive Electrodes for Near-Ultraviolet Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4718. [PMID: 37445032 DOI: 10.3390/ma16134718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
This research study thoroughly examines the optimal thickness of indium tin oxide (ITO), a transparent electrode, for near-ultraviolet (NUV) light-emitting diodes (LEDs) based on InGaN/AlGaInN materials. A range of ITO thicknesses from 30 to 170 nm is investigated, and annealing processes are performed to determine the most favorable figure of merit (FOM) by balancing transmittance and sheet resistance in the NUV region. Among the films of different thicknesses, an ITO film measuring 110 nm, annealed at 550 °C for 1 min, demonstrates the highest FOM. This film exhibits notable characteristics, including 89.0% transmittance at 385 nm, a sheet resistance of 131 Ω/□, and a contact resistance of 3.1 × 10-3 Ω·cm2. Comparing the performance of NUV LEDs using ITO films of various thicknesses (30, 50, 70, 90, 130, 150, and 170 nm), it is observed that the NUV LED employing ITO with a thickness of 110 nm achieves a maximum 48% increase in light output power at 50 mA while maintaining the same forward voltage at 20 mA.
Collapse
Affiliation(s)
- Min-Ju Kim
- School of Electronics and Electrical Engineering, Department of Foundry Engineering, Convergence Semiconductor Research Center, Dankook University, Yongin-si 16890, Republic of Korea
| |
Collapse
|
12
|
Nizameev IR, Nizameeva GR, Kadirov MK. Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:831. [PMID: 36903709 PMCID: PMC10005722 DOI: 10.3390/nano13050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task. We have previously developed a material for optically transparent electrodes based on oriented platinum nanonetworks. This technique was upgraded to obtain a cheaper option from oriented nickel networks. The study was carried out to find the optimal electrical conductivity and optical transparency values of the developed coating, and the dependence of these values on the amount of nickel used was investigated. The figure of merit (FoM) was used as a criterion for the quality of the material in terms of finding the optimal characteristics. It was shown that doping PEDOT: PSS with p-toluenesulfonic acid in the design of an optically transparent electroconductive composite coating based on oriented nickel networks in a polymer matrix is expedient. It was found that the addition of p-toluenesulfonic acid to an aqueous dispersion of PEDOT: PSS with a concentration of 0.5% led to an eight-fold decrease in the surface resistance of the resulting coating.
Collapse
Affiliation(s)
- Irek R. Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev—KAI, 10, K. Marx Str., Kazan 420111, Russia
| | - Guliya R. Nizameeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Physics, Kazan National Research Technological University, 68, K. Marx Str., Kazan 420015, Russia
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia
- Department of Physics, Kazan National Research Technological University, 68, K. Marx Str., Kazan 420015, Russia
| |
Collapse
|
13
|
Georgiou E, Ioakeimidis A, Antoniou I, Papadas IT, Hauser A, Rossier M, Linardi F, Choulis SA. Non-Embedded Silver Nanowires/Antimony-Doped Tin Oxide/Polyethylenimine Transparent Electrode for Non-Fullerene Acceptor ITO-Free Inverted Organic Photovoltaics. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:181-188. [PMID: 36711043 PMCID: PMC9878715 DOI: 10.1021/acsaelm.2c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Indium tin oxide (ITO)-free solution-processed transparent electrodes are an essential component for the low-cost fabrication of organic optoelectronic devices. High-performance silver nanowires (AgNWs) ITO-free inverted organic photovoltaics (OPVs) usually require a AgNWs-embedded process. A simple cost-effective roll-to-roll production process of inverted ITO-free OPVs with AgNWs as a bottom transparent electrode requires solution-based thick metal oxides as carrier-selective contacts. In this reported study, we show that a solution-processed antimony-doped tin oxide (ATO)/polyethylenimine (PEI) electron-selective contact incorporated on the top of non-embedded AgNWs provides a high-performance ITO-free bottom electrode for non-fullerene acceptor (NFA) inverted OPVs.
Collapse
Affiliation(s)
- Efthymios Georgiou
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Apostolos Ioakeimidis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Ioanna Antoniou
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| | - Ioannis T. Papadas
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
- Department
of Public and Community Health, School of Public Health, University of West Attica, Athens 11521, Greece
| | - Alina Hauser
- Avantama
AG, Laubisruetistr. 50, Staefa 8712, Switzerland
| | | | - Flavio Linardi
- Avantama
AG, Laubisruetistr. 50, Staefa 8712, Switzerland
| | - Stelios A. Choulis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Street, Limassol 3603, Cyprus
| |
Collapse
|
14
|
Park Y, Kim JP, Kim WH, Song YH, Kim S, Jeong HJ. Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor. RSC Adv 2023; 13:1551-1557. [PMID: 36688061 PMCID: PMC9817082 DOI: 10.1039/d2ra05600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
Demand for flexible transparent sensors for futuristic cars is increasing since such sensors can enhance the freedom of design and aesthetic value in the interior of cars. Herein, we propose a unique roll-to-roll UV lamination process that can expedite large-scale Ag nanowire (AgNW) transfer for a flexible capacitive sensor, using a photocurable resin composed of an epoxy acrylate oligomer, a reactive monomer (1,6-hexanediol diacrylate), and a photoinitiator (1-hydroxycyclohexyl phenyl ketone). The acryl groups in the resin were rapidly crosslinked by UV irradiation, which facilitated the AgNWs transfer from a PET to a PC substrate with the speed of 1050 cm2 min-1 and enhanced the adhesion between the AgNWs and the PC substrate. Systematic experiments were performed to determine optimal fabrication parameters with respect to the UV dose, lamination pressure, and laser dicing conditions. At the optimal fabrication conditions, the sheet resistance of AgNWs on a PC film (PC-AgNW) was as small as 36.79 Ω sq-1, which was only 3.17% deviation from that on a PET film (PET-AgNW). Furthermore, the optical transmittance of the PC-AgNW exceeded 88% over the visible range, and it was greater than that of the PET-AgNW. Notably, the sheet resistance of the PC-AgNW was almost constant after 50 taping and peeling cycles, indicating remarkable adhesion to the substrate. Furthermore, a capacitive touch sensor was fabricated using the PC-AgNW, and its switching signals were presented with and without finger touch.
Collapse
Affiliation(s)
- Yangkyu Park
- Department of Mechanical Design Engineering, Chonnam National University 50 Daehak-ro Yeosu Chonnam 59626 Republic of Korea
- Corporate Growth Support Center, Jeonnam Yeosu Industry-University Convergence Agency 17 Samdong 3-gil Yeosu Chonnam 59631 Repulic of Korea
| | - Jae Pil Kim
- Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI) Gwangju 61007 Republic of Korea
| | - Wan Ho Kim
- Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI) Gwangju 61007 Republic of Korea
| | - Young Hyun Song
- Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI) Gwangju 61007 Republic of Korea
| | - Sunyoon Kim
- Department of Mechanical Design Engineering, Chonnam National University 50 Daehak-ro Yeosu Chonnam 59626 Republic of Korea
| | - Ho-Jung Jeong
- Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI) Gwangju 61007 Republic of Korea
| |
Collapse
|
15
|
Jeong H, Lee JH, Song JY, Ghani F, Lee D. Continuous Patterning of Silver Nanowire-Polyvinylpyrrolidone Composite Transparent Conductive Film by a Roll-to-Roll Selective Calendering Process. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:32. [PMID: 36615941 PMCID: PMC9823613 DOI: 10.3390/nano13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The roll-to-roll (R2R) continuous patterning of silver nanowire-polyvinylpyrrolidone (Ag NW-PVP) composite transparent conductive film (cTCF) is demonstrated in this work by means of slot-die coating followed by selective calendering. The Ag NWs were synthesized by the polyol method, and adequately washed to leave an appropriate amount of PVP to act as a capping agent and dispersant. The as-coated Ag NW-PVP composite film had low electronic conductivity due to the lack of percolation path, which was greatly improved by the calendering process. Moreover, the dispersion of Ag NWs was analyzed with addition of PVP in terms of density and molecular weight. The excellent dispersion led to uniform distribution of Ag NWs in a cTCF. The continuous patterning was conducted using an embossed pattern roll to perform selective calendering. To evaluate the capability of the calendering process, various line widths and spacing patterns were investigated. The minimum pattern dimensions achievable were determined to be a line width of 0.1 mm and a line spacing of 1 mm. Finally, continuous patterning using selective calendering was applied to the fabrication of a flexible heater and a resistive touch sensing panel as flexible electronic devices to demonstrate its versatility.
Collapse
Affiliation(s)
- Hakyung Jeong
- Department of Ultra-Precision Machines and Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Hak Lee
- Department of Ultra-Precision Machines and Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jun-Yeob Song
- Department of Ultra-Precision Machines and Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Faizan Ghani
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongjin Lee
- Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
All-atmospheric fabrication of Ag-Cu core-shell nanowire transparent electrodes with Haacke figure of merit >600 × 10 -3 Ω -1. Sci Rep 2022; 12:20962. [PMID: 36470957 PMCID: PMC9722900 DOI: 10.1038/s41598-022-25080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Transparent conducting electrodes (TCEs) are essential components in devices such as touch screens, smart windows, and photovoltaics. Metal nanowire networks are promising next-generation TCEs, but best-performing examples rely on expensive metal catalysts (palladium or platinum), vacuum processing, or transfer processes that cannot be scaled. This work demonstrates a metal nanowire TCE fabrication process that focuses on high performance and simple fabrication. Here we combined direct and plating metallization processes on electrospun nanowires. We first directly metallize silver nanowires using reactive silver ink. The silver catalyzes subsequent copper plating to produce Ag-Cu core-shell nanowires and eliminates nanowire junction resistances. The process allows for tunable transmission and sheet resistance properties by adjusting electrospinning and plating time. We demonstrate state-of-the-art, low-haze TCEs using an all-atmospheric process with sheet resistances of 0.33 Ω sq-1 and visible light transmittances of 86% (including the substrate), leading to a Haacke figure of merit of 652 × 10-3 Ω-1. The core-shell nanowire electrode also demonstrates high chemical and bending durability.
Collapse
|
17
|
Liu P, Huang B, Peng L, Liu L, Gao Q, Wang Y. A crack templated copper network film as a transparent conductive film and its application in organic light-emitting diode. Sci Rep 2022; 12:20494. [DOI: 10.1038/s41598-022-24672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractIn this paper, a highly transparent, low sheet resistance copper network film fabricated by a crack template, which made by drying an acrylic based colloidal dispersion. The fabricated copper network film shows excellent optoelectronic performances with low sheet resistance of 13.4 Ω/sq and high optical transmittance of 93% [excluding Polyethylene terephthalate (PET) substrate] at 550 nm. What’s more, the surface root mean square of the copper network film is about 4 nm, and the figure of merit is about 380. It’s comparable to that of conventional indium tin oxide thin film. The repeated bending cycle test and adhesive test results confirm the reliability of the copper network film. As a transparent conductive film, the copper network film was used as an anode to prepare organic light-emitting diode (OLED). The experiment results show that the threshold voltage of the OLED is less than 5 V and the maximum luminance is 1587 cd/m2.
Collapse
|
18
|
Giasafaki D, Mitzithra C, Belessi V, Filippakopoulou T, Koutsioukis A, Georgakilas V, Charalambopoulou G, Steriotis T. Graphene-Based Composites with Silver Nanowires for Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193443. [PMID: 36234570 PMCID: PMC9565487 DOI: 10.3390/nano12193443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
Graphene/metal nanocomposites have shown a strong potential for use in electronic applications. In particular, the combination of silver nanowires (AgNWs) with graphene derivatives leads to the formation of an efficient conductive network, thus improving the electrical properties of a composite. This work focused on developing highly conductive hydrophilic hybrids of simultaneously functionalized and reduced graphene oxide (f-rGO) and AgNWs in different weight ratios by following two different synthetic routes: (a) the physical mixture of f-rGO and AgNWs, and (b) the in situ reduction of GO in the presence of AgNWs. In addition, the role of AgNWs in improving the electrical properties of graphene derivatives was further examined by mixing AgNWs with a hybrid of few-layered graphene with functionalized multiwalled carbon nanotubes (FLG/MWNT-f-OH). The studied materials showed a remarkable improvement in the overall electrical conductivity due to the synergistic effect of their components, which was proportional to the percentage of Ag and dependent on the procedure of the hybrid formation. One of the f-rGO/AgNWs composites was also selected for the preparation of gravure printing inks that were tested to determine their rheological and printing properties. All of the f-rGO/AgNWs composites were shown to be very promising materials for use as conductive inks for flexible electronics.
Collapse
Affiliation(s)
- Dimitra Giasafaki
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| | - Christina Mitzithra
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| | - Vassiliki Belessi
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, 12243 Egaleo, Greece
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Theodora Filippakopoulou
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, 12243 Egaleo, Greece
| | | | | | | | - Theodore Steriotis
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece
| |
Collapse
|
19
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
20
|
Raman S, Arunagirinathan RS. Silver Nanowires in Stretchable Resistive Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1932. [PMID: 35683788 PMCID: PMC9182513 DOI: 10.3390/nano12111932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Silver nanowires (AgNWs), having excellent electrical conductivity, transparency, and flexibility in polymer composites, are reliable options for developing various sensors. As transparent conductive electrodes (TCEs), AgNWs are applied in optoelectronics, organic electronics, energy devices, and flexible electronics. In recent times, research groups across the globe have been concentrating on developing flexible and stretchable strain sensors with a specific focus on material combinations, fabrication methods, and performance characteristics. Such sensors are gaining attention in human motion monitoring, wearable electronics, advanced healthcare, human-machine interfaces, soft robotics, etc. AgNWs, as a conducting network, enhance the sensing characteristics of stretchable strain-sensing polymer composites. This review article presents the recent developments in resistive stretchable strain sensors with AgNWs as a single or additional filler material in substrates such as polydimethylsiloxane (PDMS), thermoplastic polyurethane (TPU), polyurethane (PU), and other substrates. The focus is on the material combinations, fabrication methods, working principles, specific applications, and performance metrics such as sensitivity, stretchability, durability, transparency, hysteresis, linearity, and additional features, including self-healing multifunctional capabilities.
Collapse
Affiliation(s)
- Srinivasan Raman
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India;
| | - Ravi Sankar Arunagirinathan
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India;
- Centre for Innovation and Product Development (CIPD), Chennai Campus, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India
| |
Collapse
|
21
|
Sun Y, Wang X, Zhang H. Sensitive and Stable Electrochemical Sensor for Folic Acid Determination Using a ZIF-67/AgNWs Nanocomposite. BIOSENSORS 2022; 12:bios12060382. [PMID: 35735530 PMCID: PMC9221106 DOI: 10.3390/bios12060382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/03/2023]
Abstract
An electrochemical sensor using silver nanowires (AgNWs)-doped with a zeolite-like metal-organic framework (ZIF-67) was developed for highly sensitive and stable determination of folic acid (FA). The ZIF-67/AgNWs nanocomposite was prepared by a one-step reaction via a template method and drop-coated onto the surface of a screen-printed carbon electrode (SPCE) to form a ZIF-67/AgNWs@SPCE electrochemical sensing platform. The electrochemical square wave voltammetry (SWV) curve for this sensing platform was measured in an electrolyte solution containing FA under the optimum experimental conditions. The redox peak current of FA (IFA) increased with increases in the FA concentration (CFA). There was a linear relationship between IFA and CFA in the range of 0.1 μM to 10 μM, and the determination limit was 30 nM. The ZIF-67/AgNWs@SPCE was used as an electrochemical sensor for FA which maintained a good stability over 7 days and showed good determination performance in real samples with a high recovery rate (100.9-102.1%, n = 6).
Collapse
Affiliation(s)
- Yujiao Sun
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xue Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China;
| | - Hao Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China;
- Correspondence: ; Tel./Fax: +86-10-6273-6344
| |
Collapse
|
22
|
Cheng J, You L, Cai X, Yang J, Chen H, Shi X, Wu J, Wang J, Xiong C, Wang S. Fermentation-Inspired Gelatin Hydrogels with a Controllable Supermacroporous Structure and High Ductility for Wearable Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26338-26349. [PMID: 35590475 DOI: 10.1021/acsami.2c02524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supermacroporous hydrogels have attracted wide concern due to their comfort and breathability in wearable health-monitoring applications. Size controllable supermacroporous structure and excellent mechanical properties are the most important for its application. However, they are normally fabricated by the cryogelation method, which is difficult to control pore size and maintain flexibility. Here, yeast fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and excellent mechanical properties were fabricated for the first time. The pore size can be controlled by adjusting the content of glucose and yeast, the ratio of glucose to yeast, fermentation time, and gelatin content during fermentation. The hydrogels demonstrated a controllable pore size range from 100 to 400 μm and rapid swelling characteristics. The mechanical properties were maintained by soaking ammonium sulfate solution for 12 h, showing maximum tensile and compressive strains over 300 and 99%, respectively. This novel approach can be easily applied to the preparation of supermacroporous and high ductility hydrogels under mild conditions. Furthermore, conductive hydrogels combined supermacroporous structures with conductive polyaniline and reduced oxidized graphene, and silver nanowires were prepared as wearable flexible sensors. The obtained sensors maintain well-distributed porosity, breathability, and mechanical flexibility, also showing excellent conductivity of 2.4 S m-1. Finally, the sensors were successfully applied to detect physiological signals and human-computer interaction.
Collapse
Affiliation(s)
- Jing Cheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinhao Yang
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xinming Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiajie Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jianhua Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Caihua Xiong
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Hou S, Liu J, Shi F, Zhao GX, Tan JW, Wang G. Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes. Front Chem 2022; 10:864186. [PMID: 35360530 PMCID: PMC8960315 DOI: 10.3389/fchem.2022.864186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Flexible organic light-emitting diodes and perovskite light-emitting diodes (PeLEDs) have been investigated as an innovative category of revolutionary LED devices for next-generation flat display and lighting applications. A transparent conductive electrode is a key component in flexible OLEDs and PeLEDs, and has been the limitation of the development in this area. Silver nanowires (AgNWs) have been regarded as the most suitable alternative material in TCEs, due to the economical solution synthesis and compatibility with roll-to-roll technology. This mini-review addresses the advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes, and the relationship between electrode optimization and device performance is demonstrated. Moreover, the potential strategies and perspectives for their further development of AgNWs-based flexible OLEDs and PeLEDs are presented.
Collapse
Affiliation(s)
- Shuping Hou
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| | - Jie Liu
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Feipeng Shi
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Guo-Xu Zhao
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Jia-Wei Tan
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| |
Collapse
|
24
|
Kumar A, Shaikh MO, Kumar RKR, Dutt K, Pan CT, Chuang CH. Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites. NANOSCALE 2022; 14:1742-1754. [PMID: 35014657 DOI: 10.1039/d1nr05068k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their excellent sensitivity, stretchability, flexibility and conductivity, polymeric nanocomposites with conductive fillers have shown promise for a wide range of applications in bioelectronics and wearable devices. Herein, we report on the development of a flexible and biocompatible polymeric nanocomposite comprising ultra-long Ag-Au core-sheath nanowires (Au@AgNWs) dispersed in elastomeric media to fabricate a high-resolution wearable temperature sensor. Ultra-long AgNWs with an aspect ratio of about 1500 were synthesized using a Ca2+ ion-mediated facile one-pot polyol process. To enhance the biocompatibility and anti-oxidative property of the AgNWs, a 10-20 nm gold (Au) layer was conformably deposited without affecting the original nanowire morphology. The core-sheath structure of Au@AgNWs was characterized using HRTEM and EDS elemental mapping while the biocompatibility and anti-oxidative properties were tested using hydrogen peroxide (H2O2) etching in solution phase. Finally, the fabricated nanowires were used to prepare the Au@AgNW-poly-ethylene glycol (PEG)-polyurethane (PU)-based nanocomposite ink which can be printed on interdigitated electrodes to fabricate a thermoresistive temperature sensor with negative temperature coefficient (NTC) of resistance and quick response time (<100 s). The Au@AgNW-PEG-PU nanocomposite was characterized in detail and a novel temperature sensing mechanism based on controlling the internanowire distance of the PEG coated Au@AgNWs percolation by means of capillarity force among the nanowires as a result of the glass transition temperature of thermosensitive PEG was demonstrated. The proposed printable temperature sensor is flexible and biocompatible and shows promise for a range of wearable applications.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung 407224, Taiwan
| | - R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Karishma Dutt
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
25
|
Kumar A, Hsieh PY, Shaikh MO, Kumar RKR, Chuang CH. Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites. MICROMACHINES 2022; 13:mi13020197. [PMID: 35208321 PMCID: PMC8875379 DOI: 10.3390/mi13020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
In this study, polyethylene glycol (PEG) and polyurethane (PU)-based shape-stabilized copolymer nanocomposites were synthesized and utilized for developing low-cost and flexible temperature sensors. PU was utilized as a flexible structural material for loading a thermosensitive phase change PEG polymer by means of physical mixing and chemical crosslinking. Furthermore, the introduction of multi-walled carbon nanotubes (MWCNT) as a conductive filler in the PEG-PU copolymer resulted in a nanocomposite with thermoresistive properties. MWCNT loading concentrations from 2 wt.% to 10 wt.% were investigated, to attain the optimum conductivity of the nanocomposite. Additionally, the effect of MWCNT loading concentration on the thermosensitive behavior of the nanocomposite was analyzed in the temperature range 25 °C to 50 °C. The thermosensitive properties of the physically mixed and crosslinked polymeric nanocomposites were compared by spin coating the respective nanocomposites on screen printed interdigitated (IDT) electrodes, to fabricate the temperature sensor. The chemically crosslinked MWCNT-PEG-PU polymeric nanocomposite showed an improved thermosensitive behavior in the range 25 °C to 50 °C, compared to the physically mixed nanocomposite. The detailed structural, morphological, thermal, and phase transition properties of the nanocomposites were investigated using XRD, FTIR, and DSC analysis. XRD and FTIR were used to analyze the crystallinity and PEG-PU bonding of the copolymer nanocomposite, respectively; while the dual phase (solid–liquid) transition of PEG was analyzed using DSC. The proposed nanocomposite-based flexible temperature sensor demonstrated excellent sensitivity, reliability and shows promise for a wide range of bio-robotic and healthcare applications.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (A.K.); (P.-Y.H.); (R.K.R.K.)
| | - Pen-Yi Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (A.K.); (P.-Y.H.); (R.K.R.K.)
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung 407224, Taiwan;
| | - R. K. Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (A.K.); (P.-Y.H.); (R.K.R.K.)
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (A.K.); (P.-Y.H.); (R.K.R.K.)
- Correspondence: ; Tel.: +886-75-252-000 (ext. 5785)
| |
Collapse
|
26
|
Song J, Kim MR, Kim Y, Seo D, Ha K, Song TE, Lee WG, Lee Y, Kim KC, Ahn CW, Han H. Fabrication of junction-free Cu nanowire networks via Ru-catalyzed electroless deposition and their application to transparent conducting electrodes. NANOTECHNOLOGY 2021; 33:065303. [PMID: 34724650 DOI: 10.1088/1361-6528/ac353d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Over the past few years, metal nanowire networks have attracted attention as an alternative to transparent conducting oxide materials such as indium tin oxide for transparent conducting electrode applications. Recently, electrodeposition of metal on nanoscale template is widely used for formation of metal network. In the present work, junctionless Cu nanowire networks were simply fabricated on a substrate by forming a nanostructured Ru with 80 nm width as a seed layer, followed by direct electroless deposition of Cu. By controlling the density of Ru nanowires or the electroless deposition time, we readily achieve desired transmittance and sheet resistance values ranging from ∼1 kΩ sq-1at 99% to 9 Ω sq-1at 89%. After being transferred to flexible substrates, the nanowire networks exhibited no obvious increase in resistance during 8000 cycles of a bending test to a radius of 2.5 mm. The durability was verified by evaluation of its heating performance. The maximum temperature was greater than 180 °C at 3 V and remained constant after three repeated cycles and for 10 min. Transmission electron microscopy and x-ray diffraction studies revealed that the adhesion between the electrolessly deposited Cu and the seed Ru nanowires strongly influenced the durability of the core-shell structured nanowire-based heaters.
Collapse
Affiliation(s)
- Jinkyu Song
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Mee-Ree Kim
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
- Department of Intelligent Information Convergence, Mokwon University, Doanbuk-ro, Seo-gu Daejeon 35349, Republic of Korea
| | - Youngtae Kim
- Graduate School of Green Energy Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Darae Seo
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyungryul Ha
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae-Eun Song
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Wan-Gyu Lee
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Yonghee Lee
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Ki-Chul Kim
- Department of Intelligent Information Convergence, Mokwon University, Doanbuk-ro, Seo-gu Daejeon 35349, Republic of Korea
- Department of Advanced Chemical Engineering, Mokwon University, Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea
| | - Chi Won Ahn
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Hee Han
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
An EY, Lee S, Lee SG, Lee E, Baek JJ, Shin G, Choi KH, Cho JH, Bae GY. Self-Patterned Stretchable Electrode Based on Silver Nanowire Bundle Mesh Developed by Liquid Bridge Evaporation. NANOMATERIALS 2021; 11:nano11112865. [PMID: 34835632 PMCID: PMC8621255 DOI: 10.3390/nano11112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
A new strategy is required to realize a low-cost stretchable electrode while realizing high stretchability, conductivity, and manufacturability. In this study, we fabricated a self-patterned stretchable electrode using a simple and scalable process. The stretchable electrode is composed of a bridged square-shaped (BSS) AgNW bundle mesh developed by liquid bridge evaporation and a stretchable polymer matrix patterned with a microcavity array. Owing to the BSS structure and microcavity array, which effectively concentrate the applied strain on the deformable square region of the BSS structure under tensile stretching, the stretchable electrode exhibits high stretchability with a low ΔR/R0 of 10.3 at a strain of 40%. Furthermore, by exploiting the self-patterning ability—attributable to the difference in the ability to form liquid bridges according to the distance between microstructures—we successfully demonstrated a stretchable AgNW bundle mesh with complex patterns without using additional patterning processes. In particular, stretchable electrodes were fabricated by spray coating and bar coating, which are widely used in industry for low-cost mass production. We believe that this study significantly contributes to the commercialization of stretchable electronics while achieving high performance and complex patterns, such as stretchable displays and electronic skin.
Collapse
Affiliation(s)
- Eun Young An
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Siyoung Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan 44610, Korea;
| | - Eunho Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
| | - Jeong Ju Baek
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Gyojic Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Kyung Ho Choi
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.H.C.); (G.Y.B.)
| | - Geun Yeol Bae
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
- Correspondence: (J.H.C.); (G.Y.B.)
| |
Collapse
|