1
|
AL-Dogail A, Gajbhiye R, Solling TI, Sultan AS, Patil S, Alsarkhi A. Novel Environmentally Friendly Nanomaterials for Drag Reduction of the Emulsified Acid System. ACS OMEGA 2023; 8:44057-44075. [PMID: 38027320 PMCID: PMC10666234 DOI: 10.1021/acsomega.3c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Matrix acidizing is a technique that is widely used in the petroleum industry to remove scales and create channels in the rock. Removal of scales and creation of channels (wormhole) enhance productivity. Conventional acidizing fluids, such as hydrochloric acid (HCl) for carbonate and a mixture of hydrofluoric acid (HF) and HCl acid, are used for the matrix acidizing process. However, these fluids have some drawbacks, including strong acid strength, corrosion at high temperatures, and quick reactions with scale and particles. Emulsified acid systems (EASs) are used to address these drawbacks. EASs can create deeper and narrower wormholes by reducing the reaction rate of the acid due to the external oil phase. However, EASs have a much higher viscosity compared to conventional acidizing fluids. The high viscosity of EASs leads to a high drag that restricts pumping rates and consumes energy. This study aims to utilize environmentally friendly and widely available nanomaterials as drag-reducing agents (DRAs) of the EAS. The nanomaterials used in this study are carbon nanodots (CNDs). CNDs have unique properties and are used in diverse applications in different industries. The size of these CNDs is usually smaller than 10 nm. CNDs are characterized by their biocompatibility and chemical stability. This study investigates the use of CNDs as DRAs for EAS. Several experiments have been conducted to investigate the CNDs as a DRA for the EAS. The developed EAS was initially tested for conductivity and drop-test analysis to ensure the formation of an inverted emulsion. Thereafter, the thermal stability for the range of temperatures and the rheological properties of the EAS were evaluated to meet the criteria of field operation. Then flow experiments with EASs were conducted before and after adding the CNDs to investigate the efficacy of drag reduction of EASs. The results revealed that CNDs can be used as viscosity reducers for the EAS, where adding the CNDs to the EAS reduces the viscosity at two different HCl concentrations (15 and 20%). It reduces the viscosity of the EAS in the presence of corrosion inhibitors as well as other additives to the EAS, showing its compatibility with the field formulation. The drag reduction was observed at the range of temperatures investigated in the study. The conductivity, stability, and rheology experiments for the sample taken after the flow experiment are consistent, ensuring CNDs work as a DRA. The developed EAS with CNDs is robust in terms of field mixing procedures and thermally stable. The CNDs can be used as a DRA with EAS, which will reduce drag in pipes, increasing pumping rates and saving energy.
Collapse
Affiliation(s)
- Ala AL-Dogail
- Department
of Petroleum Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department
of Petroleum Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Theis I. Solling
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdullah S. Sultan
- Department
of Petroleum Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Shirish Patil
- Department
of Petroleum Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdelsalam Alsarkhi
- Department
of Mechanical Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Xu Z, Yu S, Fu R, Wang J, Feng Y. pH-Responsive Viscoelastic Fluids of a C 22-Tailed Surfactant Induced by Trivalent Metal Ions. Molecules 2023; 28:4621. [PMID: 37375175 DOI: 10.3390/molecules28124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, N-dimethylamine (UC22AMPM), with metal salts (i.e., AlCl3, CrCl3, and FeCl3). The effects of the surfactant/metal salt mixing ratio and the type of metal ions on the viscoelasticity and phase behavior of fluids were systematically examined by appearance observation and rheometry. To elucidate the role of metal ions, the rheological properties between AlCl3- and HCl-UC22AMPM systems were compared. Results showed the above metal salt evoked the low-viscosity UC22AMPM dispersions to form viscoelastic solutions. Similar to HCl, AlCl3 could also protonate the UC22AMPM into a cationic surfactant, forming wormlike micelles (WLMs). Notably, much stronger viscoelastic behavior was evidenced in the UC22AMPM-AlCl3 systems because the Al3+ as metal chelators coordinated with WLMs, promoting the increment of viscosity. By tuning the pH, the macroscopic appearance of the UC22AMPM-AlCl3 system switched between transparent solutions and milky dispersion, concomitant with a viscosity variation of one order of magnitude. Importantly, the UC22AMPM-AlCl3 systems showed a constant viscosity of 40 mPa·s at 80 °C and 170 s-1 for 120 min, indicative of good heat and shear resistances. The metal-containing viscoelastic fluids are expected to be good candidates for high-temperature reservoir hydraulic fracturing.
Collapse
Affiliation(s)
- Zhi Xu
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shuai Yu
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Fu
- West China School of Public Health, Sichuan University, Chengdu 610065, China
| | - Ji Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- TianFu YongXing Laboratory, New Theory and Technology of CO2 Capture Research Center, Chengdu 610217, China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Song B, Chen H, Zhang J, Cui Z, Pei X. Ecofriendly Viscoelastic Solutions Formed from a Recyclable Rosin-Based Amine Oxide Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7380-7387. [PMID: 37192398 DOI: 10.1021/acs.langmuir.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Innovations in molecular structures formed using bioresources are efficient means to prepare surfactant aggregates with unique properties. Here, a rosin-based amine oxide surfactant (R-11-3-AO) containing large hydrophobic groups was synthesized from rosin derivatives, namely, dehydroabietic acid and long-chain amino acids. Cryo-transmission electron microscopy showed that R-11-3-AO molecules formed extremely long wormlike micelles with a cross-sectional diameter of 4-5 nm at a concentration of approximately 7 mmol·L-1. A gel-like system was obtained at approximately 30 mmol·L-1 due to the dense entanglement of the wormlike micelles. The solutions also exhibited unique shear thickening behavior at a shear rate of approximately 10 s-1 even at high concentrations. The large hydrophobic group contained in R-11-3-AO is the origin of the strong van der Waals interactions between the surfactant molecules, resulting in the rapid growth of wormlike micelles. This rosin-based surfactant is the first recoverable amine oxide surfactant from solutions through the salting-out effect with high recovery rates. This work demonstrates the unique capabilities of rosin-based surfactants for forming wormlike micelles and provides opportunities for the development of surfactant recovery technologies.
Collapse
Affiliation(s)
- Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Shishkhanova K, Molchanov V, Baranov A, Kharitonova E, Orekhov A, Arkharova N, Philippova O. A pH-triggered reinforcement of transient network of wormlike micelles by halloysite nanotubes of different charge. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Luo M, Si X, Li M, Huang Y, Li Q, Li C. Experimental study on the temporary plugging performance of magnetic responsive hydrogel in hydraulic fracturing of hydrocarbon reservoirs. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Li X, Pan J, Shi J, Chai Y, Hu S, Han Q, Zhang Y, Li X, Jing D. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Si X, Luo M, Li M, Ma Y, Huang Y, Pu J. Experimental Study on the Stability of a Novel Nanocomposite-Enhanced Viscoelastic Surfactant Solution as a Fracturing Fluid under Unconventional Reservoir Stimulation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:812. [PMID: 35269301 PMCID: PMC8912115 DOI: 10.3390/nano12050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
Abstract
Fe3O4@ZnO nanocomposites (NCs) were synthesized to improve the stability of the wormlike micelle (WLM) network structure of viscoelastic surfactant (VES) fracturing fluid and were characterized by Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Then, an NC-enhanced viscoelastic surfactant solution as a fracturing fluid (NC-VES) was prepared, and its properties, including settlement stability, interactions between NCs and WLMs, proppant-transporting performance and gel-breaking properties, were systematically studied. More importantly, the influences of the NC concentration, shear rate, temperature and pH level on the stability of NC-VES were systematically investigated. The experimental results show that the NC-VES with a suitable content of NCs (0.1 wt.%) shows superior stability at 95 °C or at a high shear rate. Meanwhile, the NC-VES has an acceptable wide pH stability range of 6-9. In addition, the NC-VES possesses good sand-carrying performance and gel-breaking properties, while the NCs can be easily separated and recycled by applying a magnetic field. The temperature-resistant, stable and environmentally friendly fracturing fluid opens an opportunity for the future hydraulic fracturing of unconventional reservoirs.
Collapse
Affiliation(s)
- Xiaodong Si
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Mingliang Luo
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Mingzhong Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Yuben Ma
- Oilfield Production Department, China Oilfield Services Limited, Tianjin 300451, China;
| | - Yige Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Jingyang Pu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| |
Collapse
|