1
|
Fenniche F, Khane Y, Aouf D, Albukhaty S, Nouasria FZ, Chouireb M, Harfouche N, Henni A, Sulaiman GM, Jabir MS, Mohammed HA, Abomughaid MM. Electrochemical study of an enhanced platform by electrochemical synthesis of three-dimensional polyaniline nanofibers/reduced graphene oxide thin films for diverse applications. Sci Rep 2024; 14:26408. [PMID: 39488583 PMCID: PMC11531504 DOI: 10.1038/s41598-024-77252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
This work reports the electrochemical fabrication of thin films comprising polyaniline nanofibers (PANI) in conjunction with graphene oxide (GO) and reduced graphene oxide (rGO) on ITO substrate, along with examining the electrochemical properties, with a focus on the influence of the substrate and electrolyte in the electrodeposition methods. The study explores the electrochemical characteristics of these thin films and establishes a flexible framework for their application in diverse sectors such as sensors, supercapacitors, and electronic devices. It analyzes the impact of the substrate and electrolyte in electrodeposition techniques. The effects were studied using techniques such as cyclic voltammetry and chronoamperometry. The fabrication process of PANI/GO and PANI/rGO thin films involved the integration of rGO within PANI via electropolymerization, conducted under sulfuric acid. GO was synthesized by modifying the well-known Hummers' method and characterized by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SEM showed the diameters of the formed PANI were between 40 and 150 nm, which helped to intertwine the rGO nanosheets with PANI nanofibers to form thin films. The electrochemical behavior of the PANI/rGO thin films was examined using cyclic voltammetry (CV) and chronoamperometry in different electrolytes, including sulfuric acid (H₂SO₄) and potassium nitrate (KNO₃). The CV profiles exhibited distinct oxidation and reduction peaks, with variations in the voltammogram morphology attributed to the nature of the electrolyte and the substrate employed during the electrodeposition process. These results highlight the critical role of both the substrate and electrolyte in governing the electrochemical performance of PANI/rGO thin films. The findings from this study demonstrate a versatile approach for the fabrication of PANI/graphene-based thin films with tunable electrochemical properties, and such a strategy has great application to fabricating other thin film composites for supercapacitors or other control source frameworks requiring enhanced charge storage and electrochemical responsiveness.
Collapse
Affiliation(s)
- Fares Fenniche
- Materials, Energy Systems Technology and Environment Laboratory, Faculty of Sciences and Technology, University of Ghardaia, 47000, Ghardaia, Algeria.
- Department of Process Engineering, Faculty of Sciences and Technology, University of Ghardaïa, BP 455, 47000, Ghardaïa, Algeria.
| | - Yasmina Khane
- Materials, Energy Systems Technology and Environment Laboratory, Faculty of Sciences and Technology, University of Ghardaia, 47000, Ghardaia, Algeria
- University of Ghardaïa, BP 455, 47000, Ghardaïa, Algeria
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq.
- Al-Manara College for Medical Sciences, Maysan, 62001, Iraq.
| | - Fatima Zohra Nouasria
- Process Engineering Laboratory (PEL), Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Makhlouf Chouireb
- Laboratoire Algérienne Des Eaux (ADE), l'unité de Ghardaïa, Ghardaïa, Algeria
| | - Nesrine Harfouche
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin, Université du Sud Toulon, Var, BP 132, La Garde Cedex, 83957, France
| | - Abdellah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq.
| | - Majid S Jabir
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Bulgakov AV, Beránek J, Volodin VA, Cheng Y, Levy Y, Nagisetty SS, Zukerstein M, Popov AA, Bulgakova NM. Ultrafast Infrared Laser Crystallization of Amorphous Si/Ge Multilayer Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3572. [PMID: 37176457 PMCID: PMC10180334 DOI: 10.3390/ma16093572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Silicon-germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the number of laser pulses (single-shot and multi-shot regimes) on the crystallization of the layers. Based on structural Raman spectroscopy analysis, several annealing regimes were revealed depending on laser fluence, including partial or complete crystallization of the components and formation of solid Si-Ge alloys. Conditions for selective crystallization of germanium when Si remains amorphous and there is no intermixing between the Si and Ge layers were found. Femtosecond mid-IR laser annealing appeared to be particularly favorable for such selective crystallization. Similar crystallization regimes were observed for both single-shot and multi-shot conditions, although at lower fluences and with a lower selectivity in the latter case. A theoretical analysis was carried out based on the laser energy absorption mechanisms, thermal stresses, and non-thermal effects.
Collapse
Affiliation(s)
- Alexander V. Bulgakov
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic; (A.V.B.)
| | - Jiří Beránek
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic; (A.V.B.)
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 12001 Prague, Czech Republic
| | - Vladimir A. Volodin
- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave, 13, Novosibirsk 630090, Russia
- Physics Department, Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Yuzhu Cheng
- Physics Department, Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Yoann Levy
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic; (A.V.B.)
| | - Siva S. Nagisetty
- Coherent LaserSystems GmbH & Co. KG, Hans Boeckler Str. 12, 37079 Göttingen, Germany
| | - Martin Zukerstein
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic; (A.V.B.)
| | - Alexander A. Popov
- Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences, Yaroslavl 150007, Russia
| | - Nadezhda M. Bulgakova
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 828, 25241 Dolní Břežany, Czech Republic; (A.V.B.)
| |
Collapse
|
3
|
Socol M, Preda N, Breazu C, Costas A, Rasoga O, Petre G, Popescu-Pelin G, Iftimie S, Stochioiu A, Socol G, Stanculescu A. Macrocyclic Compounds: Metal Oxide Particles Nanocomposite Thin Films Deposited by MAPLE. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2480. [PMID: 36984360 PMCID: PMC10056935 DOI: 10.3390/ma16062480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Nanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO) were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness, which is a key feature for their integration in structures for optoelectronic applications. The influence of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained composite films were evaluated in comparison to a reference layer based only on an organic blend. Thus, in the case of nanocomposite films, the vibrational fingerprints of both organic compounds were identified in the infrared spectra, their specific strong absorption bands were observed in the UV-Vis spectra, and a quenching of the TPyP emission band was visible in the photoluminescence spectra. The morphological analysis evidenced agglomerated particles on the composite film surface, but their presence has no significant impact on the roughness of the MAPLE deposited layers. The current density-voltage (J-V) characteristics of the structures based on the nanocomposite films deposited by MAPLE revealed the critical role played by the layer composition and component ratio, an improvement in the electrical parameters values being achieved only for the films with a certain type and optimum amount of metal oxide nanoparticles.
Collapse
Affiliation(s)
- Marcela Socol
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Carmen Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andreea Costas
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Oana Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Gabriela Petre
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Sorina Iftimie
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Andrei Stochioiu
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Anca Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
4
|
Wu Q, Zhang J, Sun C, Zhang X, Liu M, Zeng R, Liu M, Wei G, Wang P, Qiao Z, Lin Z. Probing the structural, electronic and optical properties of Cs2Ag1-xNaxInCl6 lead-free double perovskite from first principles. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
Al-Ahmed A, Afzaal M, Mahar N, Khan F, Pandey S, Zahir MH, Al-Suliman FA. The Synergy of Lead Chalcogenide Nanocrystals in Polymeric Bulk Heterojunction Solar Cells. ACS OMEGA 2022; 7:45981-45990. [PMID: 36570221 PMCID: PMC9773793 DOI: 10.1021/acsomega.2c06759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 06/12/2023]
Abstract
Photoactive polymer and quantum dots (QDs)/nanocrystals (NCs)-based bulk heterojunction (BHJ) solar cells have the combined positivity of organic semiconductors and inorganic components, which can enable a high carrier mobility and absorption coefficient. Additionally, the NCs also provide the opportunity to tune the band gap to obtain enhanced absorption in a broad solar spectrum. Among the semiconductors, lead chalcogenide NCs are of particular interest due to their good photosensitivity in the near-infrared (NIR) region of the solar spectrum. These NCs have large exciton Bohr radii (18, 46, and 150 nm for PbS, PbSe, and PbTe, respectively) and tunable sizes depending on the optical bandgaps between 0.3 and 1.5 eV. Independently, lead chalcogenide NCs have been studied extensively for different applications; however, uses in polymer-NC-based bulk heterojunction solar cells are limited. This Review has been structured on the lead chalcogenide NCs incorporated in polymer composite-based bulk heterojunction solar cells covering the material, properties, and solar cell performance to find the issues and explore future opportunities.
Collapse
Affiliation(s)
- Amir Al-Ahmed
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and & Minerals
(KFUPM), Dhahran 31261, Saudi Arabia
| | - Mohammad Afzaal
- Maths
and Natural Sciences Division, Higher Colleges
of Technology, P.O. Box 7947, Sharjah, United
Arab Emirates
| | - Nasurullah Mahar
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and & Minerals
(KFUPM), Dhahran 31261, Saudi Arabia
| | - Sadanand Pandey
- Department
of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Md. Hasan Zahir
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and & Minerals
(KFUPM), Dhahran 31261, Saudi Arabia
| | - Fahad A. Al-Suliman
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and & Minerals
(KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Socol M, Preda N. Editorial for Special Issue: "Thin Films Based on Nanocomposites". NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3301. [PMID: 36234427 PMCID: PMC9565326 DOI: 10.3390/nano12193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Nanocomposites gained great attention from both fundamental scientific research and technological application perspectives emerging as a fascinating class of advanced functional materials, that can find applications in various areas such as electronics, energy, environmental protection, healthcare, etc [...].
Collapse
|
7
|
Ovchenkova EN, Bichan NG, Gostev FE, Shelaev IV, Nadtochenko VA, Lomova TN. The donor-acceptor dyad based on high substituted fullero[70]pyrrolidine-coordinated manganese (III) phthalocyanine for photoinduced electron transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120166. [PMID: 34274635 DOI: 10.1016/j.saa.2021.120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Donor-acceptor dyads based on manganese porphyrins/phthalocyanines and fullerene derivatives with N-basicity centers have proved as promising photoinduced electron-transfer systems for photovoltaic devices, biologically active compounds, and molecular magnetic materials. The macroheterocyclic chromophore characterized by rich UV-visible-near IR absorption is the basis for the applications above. The problem of the synthesis and the characterization of new effective dyads was solved in this work on the example of the self-organizing system consisting of (octakis-3,5-di-tert-butylphenoxy)phthalocyaninato)manganese(III) acetate, (AcO)MnPc(3,5-di-tBuPhO)8, 2',5-di(pyridin-2'-yl)-3,4-fullero[70]pyrrolidine, Py2C70, and toluene. The phthalocyanine-fullerene dyads in the molecular and cationic form (respectively (AcO)(Py2C70)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+(AcO)-) were observed and described using the chemical kinetics/thermodynamics, UV-vis, IR, 1H NMR spectroscopy and mass spectrometry methods. The 1: 1 stoichiometry of both dyads was confirmed; the equilibrium and rate constant value, K= (4.86 ± 0.56) × 104 L mol-1 and k = (4.455 ± 3.37) × 10-5 s-1 was observed for the formation of molecular and cationic dyad, respectively. The study of (AcO)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+AcO- femtosecond transient absorption spectra points to the photoinduced electron transfer in the dyad, for which the lifetimes and the rate constants of charge separation (τCS, kCS) and charge recombination (τCR, kCR) were defined. The analysis of the relationship of the dyad physicochemical parameters with the molecular structure is represented using previously published data.
Collapse
Affiliation(s)
- E N Ovchenkova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| | - N G Bichan
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation.
| | - F E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - I V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - T N Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| |
Collapse
|
8
|
Abstract
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs. In this review, we summarize the most recent successful applications of the 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, and g-C3N4, etc., adapted in the charge transporting layer, the active layer, and the electrode of the OSCs, respectively, for boosting the PCE and stability of the devices. The strengths and weaknesses of the 2D materials in the application of OSCs are also reviewed in details. Additionally, the challenges, commercialization potentials, and prospects for the further development of 2D materials-based OSCs are outlined in the end.
Collapse
|