1
|
Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, Rajput VD, Fathi A, Pradhan A, Sarfraz R, Sushkova S, Mandzhieva S, Minkina T, Soldatov A, Wong MH, Rensing C. Nanomaterials and biochar mediated remediation of emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170064. [PMID: 38242481 DOI: 10.1016/j.scitotenv.2024.170064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamil Nadu, India
| | | | | | | | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rubab Sarfraz
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Sinha R, Ghosal PS. A comprehensive appraisal on status and management of remediation of DBPs by TiO 2 based-photocatalysts: Insights of technology, performance and energy efficiency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117011. [PMID: 36525732 DOI: 10.1016/j.jenvman.2022.117011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Disinfection has been acknowledged as an inevitable technique in water treatment. However, an inadvertent consequence of generation of carcinogenic and mutagenic disinfection byproducts (DBPs) is associated with the reaction of disinfectants and natural organic matter (NOM) present in water. More than 700 DBPs have been identified in drinking water. The conventional processes carried out in WTPs do not optimally ensure NOM elimination, which evokes the need for the incorporation of other processes. In this context, several physicochemical and advanced oxidation processes (AOP), such as adsorption, membrane techniques, photocatalysis, etc., have been studied for the removal of NOM from water. Photocatalysis using semiconductors has been one of the most proficient technologies, which utilizes light energy for the degradation of recalcitrant organics. The present study aims to provide a comprehensive appraisal on the performance of titanium dioxide (TiO2) based photocatalysts in the remediation of DBPs concerning the efficacy and energy requirements of the system. Furthermore, the effect of process parameters, such as pH, catalyst dose, light intensity, etc. on the efficacy of the process was also studied. It was observed that conventional P25-TiO2 powders were efficient in the degradation of dissolved organic carbon (DOC) (up to 90%). However, low photocatalytic activity under visible light activation is one of its significant downsides. Several modifications on the catalyst surface in many studies exhibited advantages, such as high humic acid (HA) degradation under visible light. Furthermore, doped TiO2 catalysts have shown high total organic carbon (TOC) degradation. The photocatalytic systems have achieved a better decrease in trihalomethane formation potential (THMFP) when compared to haloacetic acid formation potential (HAAFP). The energy requirements of the photocatalytic systems are determined by electrical energy per order (EE/O), which has been observed to be lesser for doped TiO2 and engineered TiO2 catalysts when compared with P25-TiO2 powders. Carbon, iron, silver, etc., based catalysts can be a promising alternative to TiO2-based photocatalysts for the degradation of NOM, although further research is required in this direction. The present review provides critical highlights on the uses, opportunities, and challenges of TiO2-based photocatalytic techniques for the management of DBPs and their precursors pertaining to an emerging area of water treatment.
Collapse
Affiliation(s)
- Rupal Sinha
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Guidi P, Bernardeschi M, Palumbo M, Buttino I, Vitiello V, Scarcelli V, Chiaretti G, Fiorati A, Pellegrini D, Pontorno L, Bonciani L, Punta C, Corsi I, Frenzilli G. Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:396. [PMID: 36770355 PMCID: PMC9920148 DOI: 10.3390/nano13030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The use of eco-friendly engineered nanomaterials represents a recent solution for an effective and safe treatment of contaminated dredging sludge. In this study, an eco-designed engineered material based on cross-linked nanocellulose (CNS) was applied for the first time to decontaminate a real matrix from heavy metals (namely Zn, Ni, Cu, and Fe) and other undesired elements (mainly Ba and As) in a lab-scale study, with the aim to design a safe solution for the remediation of contaminated matrices. Contaminated freshwater sludge was treated with CNS coupled with a filtering fine-mesh net, and the obtained waters were tested for acute and sublethal toxicity. In order to check the safety of the proposed treatment system, toxicity tests were conducted by exposing the bacterium Aliivibrio fischeri and the crustacean Heterocypris incongruens, while subtoxicity biomarkers such as lysosomal membrane stability, genetic, and chromosomal damage assessment were performed on the freshwater bivalve Dreissena polymorpha. Dredging sludge was found to be genotoxic, and such genotoxicity was mitigated by the combined use of CNS and a filtering fine-mesh net. Chemical analyses confirmed the results by highlighting the abetment of target contaminants, indicating the present model as a promising tool in freshwater sludge nanoremediation.
Collapse
Affiliation(s)
- Patrizia Guidi
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Mara Palumbo
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Valentina Vitiello
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Gianluca Chiaretti
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy
| | - David Pellegrini
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy
| | - Lorenzo Pontorno
- Biochemie Lab. S.r.l, Via di Limite 27G, 50013 Campi Bisenzio, Italy
| | - Lisa Bonciani
- Biochemie Lab. S.r.l, Via di Limite 27G, 50013 Campi Bisenzio, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, and INSTM Local Unit, University of Siena, 53100 Siena, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Guidi P, Bernardeschi M, Scarcelli V, Lucchesi P, Palumbo M, Corsi I, Frenzilli G. Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. TOXICS 2022; 10:111. [PMID: 35324736 PMCID: PMC8952326 DOI: 10.3390/toxics10030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022]
Abstract
The contamination of marine water bodies with petroleum hydrocarbons represents a threat to ecosystems and human health. In addition to the surface slick of crude oil, the water-soluble fraction of petroleum is responsible for the induction of severe toxic effects at different cellular and molecular levels. Some petroleum-derived hydrocarbons are classified as carcinogenic and mutagenic contaminants; therefore, the oil spill into the marine environment can have long term consequences to the biota. Therefore, new tools able to remediate crude oil water accommodation fraction pollution in marine water are highly recommended. Nanomaterials were recently proposed in environmental remediation processes. In the present in vivo study, the efficacy of pure anatase titanium nanoparticles (n-TiO2) was tested on Dicentrarchus labrax exposed to the accommodated fraction of crude oil. It was found that n-TiO2 nano-powders themselves were harmless in terms of DNA primary damage, and the capability of pure anatase n-TiO2 to lower the levels of DNA damage induced by a mixture of genotoxic pollutant was revealed. These preliminary results on a laboratory scale are the prerequisite for deepening this new technology for the abatement of the cellular effects related with oil spill pollutants released in marine environments.
Collapse
Affiliation(s)
- Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Science and INSTM Local Unit, University of Siena, 53100 Siena, Italy;
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| |
Collapse
|