1
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Molecular-Scale Plasmon Trapping via a Graphene-Hybridized Tip-Substrate System. MATERIALS 2022; 15:ma15134627. [PMID: 35806751 PMCID: PMC9267308 DOI: 10.3390/ma15134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
We theoretically investigated the plasmon trapping stability of a molecular-scale Au sphere via designing Au nanotip antenna hybridized with a graphene sheet embedded Silica substrate. A hybrid plasmonic trapping model is self-consistently built, which considers the surface plasmon excitation in the graphene-hybridized tip-substrate system for supporting the scattering and gradient optical forces on the optical diffraction-limit broken nanoscale. It is revealed that the plasmon trapping properties, including plasmon optical force and potential well, can be unprecedentedly adjusted by applying a graphene sheet at proper Fermi energy with respect to the designed tip-substrate geometry. This shows that the plasmon potential well of 218 kBT at room temperature can be determinately achieved for trapping of a 10 nm Au sphere by optimizing the surface medium film layer of the designed graphene-hybridized Silica substrate. This is explained as the crucial role of graphene hybridization participating in plasmon enhancement for generating the highly localized electric field, in return augmenting the trapping force acting on the trapped sphere with a deepened potential well. This study can be helpful for designing the plasmon trapping of very small particles with new routes for molecular-scale applications for molecular-imaging, nano-sensing, and high-sensitive single-molecule spectroscopy, etc.
Collapse
|
3
|
Chou Chao CT, Chou Chau YF, Chiang HP. Breaking the Symmetry of a Metal-Insulator-Metal-Based Resonator for Sensing Applications. NANOSCALE RESEARCH LETTERS 2022; 17:48. [PMID: 35441252 PMCID: PMC9018922 DOI: 10.1186/s11671-022-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 05/26/2023]
Abstract
This article designed a novel multi-mode plasmonic sensor based on a metal-insulator-metal waveguide side-coupled to a circular-shaped resonator containing an air path in the resonator. The electromagnet field distributions and transmittance spectra are investigated using finite element method-based simulations. Simulation results show that an air path in the resonator's core would impact the transmittance spectrum of SPPs. Besides, the air path is crucial in offering efficient coupling and generating multiple plasmon modes in the sensor system. The proposed structure has the advantage of multi-channel, and its sensitivity, figure of merit, and dipping strength can reach 2800 nm/RIU, 333.3 1/RIU, and 86.97%, respectively. The achieved plasmonic sensor can also apply for lab-on-chip in biochemical analysis for detecting the existence or nonappearance of diabetes through the human glucose concentration in urine.
Collapse
Affiliation(s)
- Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, Negara, BE1410, Brunei Darussalam.
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
4
|
Chou Chau YF, Chou Chao CT, Huang HJ, Chen SH, Kao TS, Chiang HP. A multichannel color filter with the functions of optical sensor and switch. Sci Rep 2021; 11:22910. [PMID: 34824366 PMCID: PMC8617143 DOI: 10.1038/s41598-021-02453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
This paper reports a multichannel color filter with the functions of optical sensor and switch. The proposed structure comprises a metal-insulator-metal (MIM) bus waveguide side-couples to six circular cavities with different sizes for filtering ultra-violet and visible lights into individual colors in the wavelength range of 350-700 nm. We used the finite element method to analyze the electromagnetic field distributions and transmittance properties by varying the structural parameters in detail. The designed plasmonic filter takes advantage of filtering out different colors since the light-matter resonance and interference between the surface plasmon polaritons (SPPs) modes within the six cavities. Results show that the designed structure can preferentially select the desired colors and confine the SPPS modes in one of the cavities. This designed structure can filter eleven color channels with a small full width at half maximum (FWHM) ~ 2 nm. Furthermore, the maximum values of sensitivity, figure of merit, quality factor, dipping strength, and extinction ratio can achieve of 700 nm/RIU, 350 1/RIU, 349.0, 65.04%, and 174.50 dB, respectively, revealing the excellent functions of sensor performance and optical switch, and offering a chance for designing a beneficial nanophotonic device.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan, ROC
| | - Sy-Hann Chen
- Department of Electrophysics, National Chiayi University, 600, Chiayi, Taiwan, ROC
| | - Tsung Sheng Kao
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC.
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
5
|
Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 2021; 11:18515. [PMID: 34531463 PMCID: PMC8445917 DOI: 10.1038/s41598-021-98001-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal–insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator. The suggested structure obtained a relatively high sensitivity and acceptable figure of merit and quality factor of about 2473 nm/RIU (refractive index unit), 34.18 1/RIU, and 56.35, respectively. Thus, the plasmonic sensor is ideal for lab-on-chip in gas and biochemical analysis and can significantly enhance the sensitivity by 177% compared to the regular one. Furthermore, the designed structure can apply in nanophotonic devices, and the range of the detected refractive index is suitable for gases and fluids (e.g., gas, isopropanol, optical oil, and glucose solution).
Collapse
|
6
|
Jing J, Liu K, Jiang J, Xu T, Wang S, Ma J, Zhang Z, Zhang W, Liu T. Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. NANOMATERIALS 2021; 11:nano11082137. [PMID: 34443967 PMCID: PMC8400597 DOI: 10.3390/nano11082137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 μg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection.
Collapse
Affiliation(s)
- Jianying Jing
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
- Correspondence: ; Tel.: +86-022-27404459
| | - Junfeng Jiang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jinying Ma
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhao Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Wenlin Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|