1
|
Attah R, Kaur K, Reilly CA, Deering-Rice CE, Kelly KE. The effects of photochemical aging and interactions with secondary organic aerosols on cellular toxicity of combustion particles. JOURNAL OF AEROSOL SCIENCE 2025; 183:106473. [PMID: 39372219 PMCID: PMC11449255 DOI: 10.1016/j.jaerosci.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fine particulate matter (PM2.5) is associated with numerous adverse health effects, including pulmonary and cardiovascular diseases and premature death. Significant contributors to ambient PM2.5 include combustion particles and secondary organic aerosols (SOA). Combustion particles enter the atmosphere and undergo an aging process that changes their shape and composition, but there is limited study on the health effects of combustion particle aging and interactions with SOA. This study aimed to understand how biological responses to combustion particles would be affected by atmospheric aging and interaction with anthropogenic SOA. Fresh combustion particles underwent photochemical aging in a potential aerosol mass (PAM) oxidation flow reactor and interacted with SOA produced by the oxidation of toluene vapor in the PAM reactor. Photochemical aging and SOA interactions lead to significant changes in the PAH content and oxidative potential of the particle. Photochemical aging and SOA interactions also affected the biological responses, such as the inflammatory response and CYP1A1 induction of the particles in monoculture and coculture cells. These findings highlight the significance of photochemical aging and SOA interactions on the composition and cellular responses of combustion particles.
Collapse
Affiliation(s)
- Reuben Attah
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
2
|
Viegas J, Cardoso EM, Bonneau L, Esteves AF, Ferreira CL, Alves G, Santos-Silva AJ, Vitale M, Arosa FA, Taborda-Barata L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024; 12:408. [PMID: 38398010 PMCID: PMC10886703 DOI: 10.3390/biomedicines12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro models are warranted. The main aim of this study was to evaluate the dose and time effects of exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or 2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3, no meaningful release of "alarmins" (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were observed. We have characterized safe time and dose conditions for aerosol nebulizations using a novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory stimulus in the future.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Elsa M. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- ESS-IPG-School of Health Sciences, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| | - Lucile Bonneau
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Ana Filipa Esteves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Catarina L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - António Jorge Santos-Silva
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Unhais da Serra Thermal Spa, Avenida das Termas, 6215-574 Unhais da Serra, Portugal
| | - Marco Vitale
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, 20132 Milan, Italy;
- FoRST—Fondazione per la Ricerca Scientifica Termale, 00198 Rome, Italy
| | - Fernando A. Arosa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Luís Taborda-Barata
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- UBIAir—Clinical & Experimental Lung Centre, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CACB—Clinical Academic Centre of Beiras, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Department of Immunoallergology, Cova da Beira University Hospital Centre, Alameda Pêro da Covilhã, 6200-251 Covilhã, Portugal
| |
Collapse
|
3
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
4
|
Deniz Derman I, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. Biofabrication 2023; 15:044103. [PMID: 37536321 PMCID: PMC10424246 DOI: 10.1088/1758-5090/aced23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | | | - Megan Callender
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Mian Horvath
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Zengshuo Mo
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Elizabeth Fleming
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, United States of America
| | - Karolina Palucka
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Cancer Institute, Penn State University, University Park, PA 16802, United States of America
- Neurosurgery Department, Penn State University, University Park, PA 16802, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Romeo D, Clement P, Wick P. Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: A comparative review. NANOIMPACT 2023; 31:100477. [PMID: 37499755 DOI: 10.1016/j.impact.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
The research on carbon-based nanomaterial (C-NM) composites has increased in the last two decades. This family of functional materials shows outstanding mechanical, thermal and electrical properties, and are being used in a variety of applications. An important challenge remains before C-NM can be fully integrated in our production industries and our lives: to assess the release of debris during production, use, and misuse of composites and the effect they may have on the environment and on human health. During their lifecycle, composites materials can be subjected to a variety of stresses which may release particles from the macroscopic range to the nanoscale. In this review, the release of debris due to abrasion, weathering and combustion as well as their toxicity is evaluated for the three most used C-NM: Carbon Black, Carbon Nanotubes and Graphene-related materials. The goal is to stimulate a Safe-By-Design approach by guiding the selection of carbon nano-fillers for specific applications based of safety and performance.
Collapse
Affiliation(s)
- Daina Romeo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
| |
Collapse
|
6
|
Joubert O. Editorial for the Special Issue "Biological and Toxicological Studies of Nanoparticles". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1968. [PMID: 37446483 DOI: 10.3390/nano13131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Nanoparticles have attracted a great deal of attention over the past two decades or more due to their unique size-dependent physical and chemical properties [...].
Collapse
Affiliation(s)
- Olivier Joubert
- Institut Jean Lamour, CNRS 7198, University of Lorraine, 54015 Nancy, France
| |
Collapse
|
7
|
Kohl Y, Müller M, Fink M, Mamier M, Fürtauer S, Drexel R, Herrmann C, Dähnhardt-Pfeiffer S, Hornberger R, Arz MI, Metzger C, Wagner S, Sängerlaub S, Briesen H, Meier F, Krebs T. Development and Characterization of a 96-Well Exposure System for Safety Assessment of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207207. [PMID: 36922728 DOI: 10.1002/smll.202207207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Michelle Müller
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Marielle Fink
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Marc Mamier
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Siegfried Fürtauer
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | | | - Ramona Hornberger
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Marius I Arz
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Sylvia Wagner
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sven Sängerlaub
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Florian Meier
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| |
Collapse
|
8
|
Derman ID, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-Throughput Bioprinting of the Nasal Epithelium using Patient-derived Nasal Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534723. [PMID: 37034627 PMCID: PMC10081172 DOI: 10.1101/2023.03.29.534723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner. 3D Bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of nasal progenitor cells ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4-week air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes such as disease modeling, immunological studies, and drug screening.
Collapse
|
9
|
Friesen A, Fritsch-Decker S, Mülhopt S, Quarz C, Mahl J, Baumann W, Hauser M, Wexler M, Schlager C, Gutmann B, Krebs T, Goßmann AK, Weis F, Hufnagel M, Stapf D, Hartwig A, Weiss C. Comparing the Toxicological Responses of Pulmonary Air-Liquid Interface Models upon Exposure to Differentially Treated Carbon Fibers. Int J Mol Sci 2023; 24:ijms24031927. [PMID: 36768249 PMCID: PMC9915385 DOI: 10.3390/ijms24031927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air-liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials.
Collapse
Affiliation(s)
- Alexandra Friesen
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Susanne Fritsch-Decker
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems, Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Mülhopt
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Caroline Quarz
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Jonathan Mahl
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Werner Baumann
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuela Hauser
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuela Wexler
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | - Tobias Krebs
- Vitrocell Systems GmbH, 79183 Waldkirch, Germany
| | | | | | - Matthias Hufnagel
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Dieter Stapf
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
- Correspondence: (A.H.); (C.W.)
| | - Carsten Weiss
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems, Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (A.H.); (C.W.)
| |
Collapse
|
10
|
Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Kęska A, Janicka A, Zawiślak M, Molska J, Włostowski R, Włóka A, Świeściak J, Ostrowski K. Assessment of the Actual Toxicity of Engine Exhaust Gas Emissions from Euro 3 and Euro 6 Compliant Vehicles with the BAT-CELL Method Using In Vitro Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14138. [PMID: 36361013 PMCID: PMC9654593 DOI: 10.3390/ijerph192114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Legal restrictions on vehicle engine exhaust gas emission control do not always go hand in hand with an actual reduction in the emissions of toxins into the atmosphere. Moreover, the methods currently used to measure exhaust gas emissions do not give unambiguous results on the impact of the tested gases on living organisms. The method used to assess the actual toxicity of gases, BAT-CELL Bio-Ambient-Tests using in vitro tests, takes into account synergistic interactions of individual components of a mixture of gases without the need to know its qualitative and quantitative composition and allows for determination of the actual toxicity of the gas composition. Using the BAT-CELL method, exhaust gases from passenger vehicles equipped with spark-ignition engines complying with the Euro 3 and Euro 6 emission standards were tested. The results of toxicological tests were correlated with the results of chromatographic analysis. It was shown that diverse qualitative composition of the mixture of hydrocarbons determining the exhaust gases toxicity may decrease the percentage value of cell survival. Additionally, it was proven that the average survival of cells after exposure to exhaust gases from tested vehicles meeting the more restrictive Euro 6 standard was lower than for vehicles meeting the Euro 3 standard thus indicating the higher toxicity of exhaust gases from newer vehicles.
Collapse
|
12
|
Jiang Y, Wingert N, Arif A, Garcia-Käufer M, Schulz SD, Hellwig E, Gminski R, Polydorou O. Cytotoxic and inflammatory response of human lung epithelial cells A549 to particles released from dental restorative materials during dry and wet grinding. Dent Mater 2022; 38:1886-1899. [DOI: 10.1016/j.dental.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
13
|
Netkueakul W, Chortarea S, Kulthong K, Li H, Qiu G, Jovic M, Gaan S, Hannig Y, Buerki-Thurnherr T, Wick P, Wang J. Airborne emissions from combustion of graphene nanoplatelet/epoxy composites and their cytotoxicity on lung cells via air-liquid interface cell exposure in vitro. NANOIMPACT 2022; 27:100414. [PMID: 35961501 DOI: 10.1016/j.impact.2022.100414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Graphene nanoplatelet (GNP) as a nanofiller improves the mechanical strength, electrical conductivity, and flame retardancy of the polymers significantly. With an increasing number of GNP-reinforced products, a careful safety assessment is needed to avoid social and economic setbacks. However, no study has addressed the effects of combustion-generated emissions from GNP-reinforced products in the lung, the most sensitive exposure route to airborne particles. Therefore, we studied the influence of GNP as a nanofiller on the emitted particles and polycyclic aromatic hydrocarbons (PAHs), and cytotoxicity of the emissions from the combustion of pure epoxy (EP) and GNP-reinforced epoxy (EP-GNP). GNP was not detected in the airborne emissions. PAHs were found in airborne particles of both emissions from EP and EP-GNP, with some differences in their concentrations. A first hazard assessment was performed on human alveolar epithelial cells exposed to the airborne emissions at air-liquid interface conditions. At 24 h and 96 h after the exposure, similar responses were observed between EP and EP-GNP except an acute transient decrease in mitochondrial activity after exposure to the emissions from EP-GNP. Both emissions from EP and EP-GNP had no acute effects on membrane integrity, cell morphology or expression of anti-oxidative stress markers (HMOX1 and SOD2 genes). Meanwhile, both emissions induced the activation of the aryl hydrocarbon receptor (CYP1A1 gene) and a transient (pro-) inflammatory response (MCP-1), but the effects between EP and EP-GNP were not significantly different.
Collapse
Affiliation(s)
- Woranan Netkueakul
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Savvina Chortarea
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Kornphimol Kulthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 12120 Pathum Thani, Thailand
| | - Hao Li
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Milijana Jovic
- Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Yvette Hannig
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
14
|
Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23126412. [PMID: 35742856 PMCID: PMC9224477 DOI: 10.3390/ijms23126412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.
Collapse
|
15
|
Murugadoss S, Mülhopt S, Diabaté S, Ghosh M, Paur HR, Stapf D, Weiss C, Hoet PH. Agglomeration State of Titanium-Dioxide (TiO 2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3226. [PMID: 34947575 PMCID: PMC8703437 DOI: 10.3390/nano11123226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2), raises concern regarding their potential adverse effects to humans. While considerable efforts have been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover, agglomerates are of prime importance in occupational exposure scenarios, but their toxicological relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential pulmonary effects induced by TiO2 agglomerates of different sizes at the air-liquid interface (ALI), which is more realistic in terms of inhalation exposure, and compare it to results previously obtained under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for this study. Stable stock dispersions of small agglomerates and their respective larger counterparts of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity, glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI induces different cellular responses than in submerged systems. We conclude that the agglomeration state is crucial in the assessment of pulmonary effects of NMs.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Sonja Mülhopt
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Hanns-Rudolf Paur
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Dieter Stapf
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Carsten Weiss
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Peter H. Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| |
Collapse
|