1
|
Chen K, Najer A, Charchar P, Saunders C, Thanapongpibul C, Klöckner A, Chami M, Peeler DJ, Silva I, Panariello L, Karu K, Loynachan CN, Frenette LC, Potter M, Tregoning JS, Parkin IP, Edwards AM, Clarke TB, Yarovsky I, Stevens MM. Non-invasive in vivo sensing of bacterial implant infection using catalytically-optimised gold nanocluster-loaded liposomes for urinary readout. Nat Commun 2024; 15:10321. [PMID: 39609415 PMCID: PMC11605077 DOI: 10.1038/s41467-024-53537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Klöckner
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Inês Silva
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Luca Panariello
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Colleen N Loynachan
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael Potter
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
2
|
Tang Z, Feng X, Tian H, Wang J, Qin W. Integration of glutathione disulfide-mediated extraction and capillary electrophoresis for determination of Cd(II) and Pb(II) in edible oils. Food Chem 2024; 457:140146. [PMID: 38901338 DOI: 10.1016/j.foodchem.2024.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
A novel method is introduced for extracting and enriching Cd(II) and Pb(II) from edible oils using glutathione disulfide (GSSG) as both an extractant and a phase-separation agent. The ions in the oils were initially extracted into an aqueous solution containing GSSG. After mixing the solution with acetonitrile at the appropriate volume ratio, a new phase formed, resulting in enrichment of the analytes. The experimental conditions were optimized using response surface methodology with a central composite design. Under optimal conditions, the method offered a combined enrichment factor of >660, with combined extraction efficiencies of 84.31% and 83.35% for Cd(II) and Pb(II), respectively. Finally, the method was conjugated to capillary electrophoresis to determine Cd(II) and Pb(II) in edible oil samples, with detection limits of 0.45 and 1.24 ppb, respectively. In comparison to traditional approaches, the GSSG-based method demonstrates rapidity, efficiency, and recyclability in extracting heavy metal ions from complex matrices.
Collapse
Affiliation(s)
- Zhanqiu Tang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinyi Feng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongyuan Tian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Pérez-Herráez I, Ferrera-González J, Zaballos-García E, González-Béjar M, Pérez-Prieto J. Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:4426-4436. [PMID: 38764750 PMCID: PMC11099914 DOI: 10.1021/acs.chemmater.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/21/2024]
Abstract
Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.
Collapse
Affiliation(s)
- Irene Pérez-Herráez
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Juan Ferrera-González
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Elena Zaballos-García
- Department
of Organic Chemistry, Universitat de València, Av. Vicent Andrés Estellés
s/n, 46100 Burjassot, Valencia ,Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
4
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Schwartz-Duval A, Mackeyev Y, Mahmud I, Lorenzi PL, Gagea M, Krishnan S, Sokolov KV. Intratumoral Biosynthesis of Gold Nanoclusters by Pancreatic Cancer to Overcome Delivery Barriers to Radiosensitization. ACS NANO 2024; 18:1865-1881. [PMID: 38206058 PMCID: PMC10811688 DOI: 10.1021/acsnano.3c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).
Collapse
Affiliation(s)
- Aaron
S. Schwartz-Duval
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Yuri Mackeyev
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Iqbal Mahmud
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Philip L. Lorenzi
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Mihai Gagea
- Department
of Veterinary Medicine & Surgery, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Sunil Krishnan
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Konstantin V. Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Mittal R, Gupta N. Towards Green Synthesis of Fluorescent Metal Nanoclusters. J Fluoresc 2023; 33:2161-2180. [PMID: 37103674 DOI: 10.1007/s10895-023-03229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
In the modern development of nanoscience and nanotechnology, metal nanoclusters have emerged as a foremost category of nanomaterials exhibiting remarkable biocompatibility and photo-stability having dramatically distinctive optical, electronic, and chemical properties. This review focuses on synthesizing fluorescent metal nanoclusters in a greener way to make them suitable for biological imaging and drug delivery application. The green methodology is the desired route for sustainable chemical production and should be utilized for any form of chemical synthesis including nanomaterials. It aims to eliminate harmful waste, uses non-toxic solvents, and employs energy-efficient processes for the synthesis. This article provides an overview of conventional synthesis methods, including stabilizing nanoclusters by small organic molecules in organic solvents. Then we focus on the improvement of properties, applications of green synthesized metal nanoclusters, challenges involved, and further advancement required in the direction of green synthesis of MNCs. There are plenty of problems for scientists to solve to make nanoclusters suitable for bio-applications, chemical sensing, and catalysis synthesized by green methods. Using bio-compatible and electron-rich ligands, understanding ligand-metal interfacial interactions, employing more energy-efficient processes, and utilizing bio-inspired templates for synthesis are some immediate problems worth solving in this field that requires continued efforts and interdisciplinary knowledge and collaboration.
Collapse
Affiliation(s)
- Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
7
|
Chang CY, Wu YR, Tseng TH, Su JH, Wang YS, Jen FY, Chen BR, Huang CL, Chen JC. Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2338. [PMID: 37630923 PMCID: PMC10457754 DOI: 10.3390/nano13162338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
In this study, differently shaped silver nanoparticles used for the synthesis of gold nanoclusters with small capping ligands were demonstrated. Silver nanoparticles provide a reaction platform that plays dual roles in the formation of Au NCs. One is to reduce gold ions and the other is to attract capping ligands to the surface of nanoparticles. The binding of capping ligands to the AgNP surface creates a restricted space on the surface while gold ions are being reduced by the particles. Four different shapes of AgNPs were prepared and used to examine whether or not this approach is dependent on the morphology of AgNPs. Quasi-spherical AgNPs and silver nanoplates showed excellent results when they were used to synthesize Au NCs. Spherical AgNPs and triangular nanoplates exhibited limited synthesis of Au NCs. TEM images demonstrated that Au NCs were transiently assembled on the surface of silver nanoparticles in the method. The formation of Au NCs was observed on the whole surface of the QS-AgNPs if the synthesis of Au NCs was mediated by QS-AgNPs. In contrast, formation of Au NCs was only observed on the edges and corners of AgNPts if the synthesis of Au NCs was mediated by AgNPts. All of the synthesized Au NCs emitted bright red fluorescence under UV-box irradiation. The synthesized Au NCs displayed similar fluorescent properties, including quantum yields and excitation and emission wavelengths.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jui-Chang Chen
- Department of Applied Chemistry, National Chiayi University, Chiayi City 600355, Taiwan; (C.-Y.C.); (Y.-R.W.); (T.-H.T.); (J.-H.S.); (Y.-S.W.); (F.-Y.J.); (B.-R.C.); (C.-L.H.)
| |
Collapse
|
8
|
Gu Y, Peng L, Ding W, Wang Y, Zeng X. An ultrasensitive FRET-based fluorescent low molecular weight heparin nanoprobe for quantifying heparanase activity. Talanta 2023; 254:124207. [PMID: 36549136 DOI: 10.1016/j.talanta.2022.124207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Heparanase (HPA) is a multifaceted endo-β-glucuronidase, and its dysregulation facilitates cancer metastasis. Developing techniques for fast and sensitively monitoring HPA enzymatic activity is crucial for searching for molecular therapies targeting HPA. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based nanoprobe AuNCs-LMWH-AuNRs, with AuNCs@GSH-cys and AuNRs/end-NH2/side-SiO2 attached to the non-reducing terminus and reducing terminus of low molecular weight heparin (LMWH), respectively. AuNCs@GSH-cys exhibited an absolute quantum yield of 1.1%. The absorption spectra of AuNRs/end-NH2/side-SiO2 (825 nm for maximum longitudinal absorption) and the emission spectra of AuNCs@GSH-cys (824 nm for maximum emission) were precisely overlapping, further enhancing the efficiency of FRET. In the presence of HPA, the LMWH nanoprobe exhibited an ultrasensitive response with excitation/emission wavelength (lambda (ex) = 560 nm, lambda (em) = 824 nm). The probe presented a wide linear dynamic detection range (LDR) of 0.125 ng/μL - 0.01 μg/μL in vitro with a limit of detection (LODs) of 82.15 pM (0.43 pg/μL). The excellent selectivity and good fluorescence turn-on efficiency of the probe made it possible for one-step detection of cellular heparanase activity. High throughput screening of HPA inhibitors also can be accomplished using the highly efficient LMWH nanoprobe.
Collapse
Affiliation(s)
- Yayun Gu
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Lizhong Peng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Weihua Ding
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong Province, 518172, China
| | - Xuhui Zeng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
9
|
Bonet-Aleta J, Garcia-Peiro JI, Irusta S, Hueso JL. Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:755. [PMID: 35269243 PMCID: PMC8911670 DOI: 10.3390/nano12050755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress level of cells or related with Parkinson's or mitochondrial diseases can be of great interest from the biomedical point of view. In this work, we have synthetized a gold-platinum Au@Pt nanoparticle with core-shell configuration exhibiting a remarkable oxidase-like mimicking activity towards the substrates 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD). The presence of a thiol group (-SH) in the chemical structure of GSH can bind to the Au@Pt nanozyme surface to hamper the activation of O2 and reducing its oxidase-like activity as a function of the concentration of GSH. Herein, we exploit the loss of activity to develop an analytical methodology able to detect and quantify GSH up to µM levels. The system composed by Au@Pt and TMB demonstrates a good linear range between 0.1-1.0 µM to detect GSH levels with a limit of detection (LoD) of 34 nM.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose I Garcia-Peiro
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
10
|
Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo SW. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. NANOMATERIALS 2021; 11:nano11102619. [PMID: 34685057 PMCID: PMC8541515 DOI: 10.3390/nano11102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to raise an increasing concern to current researchers, since their emissions have impacted the health of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots. Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons (PAHs) from household chemicals in indoor environments. This concise topical review gives updated recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also introduced for selective sensing. The current challenges and perspectives on SERS-based optical sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor SVOC detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 05006, Korea;
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul 02713, Korea;
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon 13810, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| |
Collapse
|