1
|
Moeinfard T, Ghafar-Zadeh E, Magierowski S. CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects. MICROMACHINES 2024; 15:1320. [PMID: 39597132 PMCID: PMC11596111 DOI: 10.3390/mi15111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
This review provides a comprehensive overview of point-of-care (PoC) devices across several key diagnostic applications, including blood analysis, infectious disease detection, neural interfaces, and commercialized integrated circuits (ICs). In the blood analysis section, the focus is on biomarkers such as glucose, dopamine, and aptamers, and their respective detection techniques. The infectious disease section explores PoC technologies for detecting pathogens, RNA, and DNA, highlighting innovations in molecular diagnostics. The neural interface section reviews advancements in neural recording and stimulation for therapeutic applications. Finally, a survey of commercialized ICs from companies such as Abbott and Medtronic is presented, showcasing existing PoC devices already in widespread clinical use. This review emphasizes the role of complementary metal-oxide-semiconductor (CMOS) technology in enabling compact, efficient diagnostic systems and offers insights into the current and future landscape of PoC devices.
Collapse
Affiliation(s)
- Tania Moeinfard
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, York University, Toronto, ON M3J 1P3, Canada
- Electronic Machine Intelligence Lab, York University, Toronto, ON M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, York University, Toronto, ON M3J 1P3, Canada
| | - Sebastian Magierowski
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (T.M.); (S.M.)
- Electronic Machine Intelligence Lab, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
2
|
Rubio-Monterde A, Rivas L, Gallegos M, Quesada-González D, Merkoçi A. Lateral flow immunoassay for simultaneous detection of C. difficile, MRSA, and K. pneumoniae. Mikrochim Acta 2024; 191:638. [PMID: 39352552 PMCID: PMC11445331 DOI: 10.1007/s00604-024-06701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Mainly performed within a rapid diagnostic tests company, a lateral flow (LF) system using gold nanoparticles (AuNPs) as transducers is presented able to detect three bacteria of interest, of relevance for antimicrobial resistance (AMR): Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae, with a limit of detection of 25 ng/mL of glutamate dehydrogenase (GDH) for C. difficile, 36 ng/mL of penicillin-binding protein 2a (PBP2a) for MRSA, and 4 × 106 CFU/mL for K. pneumoniae. The system showed good results with bacteria culture samples, is user-friendly, and suitable for rapid testing, as the results are obtained within 15 min.
Collapse
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Lourdes Rivas
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
| | - Marc Gallegos
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
| | - Daniel Quesada-González
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain.
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Arben Merkoçi
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain.
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Ardoino N, Lunelli L, Pucker G, Vanzetti L, Favaretto R, Pasquardini L, Pederzolli C, Guardiani C, Potrich C. Optimization of Surface Functionalizations for Ring Resonator-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3107. [PMID: 38793970 PMCID: PMC11124806 DOI: 10.3390/s24103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers. Among the several existing functionalization methods, a strategy based on aptamers and mercaptosilanes was selected as the most highly performing approach. All steps of the functionalization protocol were carefully characterized and optimized to obtain a suitable protocol to be transferred to the final biosensor. The functionalization protocol comprised a preliminary plasma treatment aimed at cleaning and activating the surface for the subsequent silanization step. Different plasma treatments as well as different silanes were tested in order to covalently bind aptamers specific to different biomarker targets, i.e., C-reactive protein, SARS-CoV-2 spike protein, and thrombin. Argon plasma and 1% v/v mercaptosilane were found as the most suitable for obtaining a homogeneous layer apt to aptamer conjugation. The aptamer concentration and time for immobilization were optimized, resulting in 1 µM and 3 h, respectively. A final passivation step based on mercaptohexanol was also implemented. The functionalization protocol was then evaluated for the detection of thrombin with a photonic biosensor based on microring resonators. The preliminary results identified the successful recognition of the correct target as well as some limitations of the developed protocol in real measurement conditions.
Collapse
Affiliation(s)
- Niccolò Ardoino
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
| | - Lorenzo Lunelli
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via alla Cascata 56/C, I-38123 Trento, Italy
| | - Georg Pucker
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Lia Vanzetti
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Rachele Favaretto
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
- Department of Physics, University of Trento, Via Sommarive 14, Povo, I-38123 Trento, Italy
| | - Laura Pasquardini
- Indivenire S.r.l., Via Sommarive 18, I-38123 Trento, Italy;
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy
| | - Cecilia Pederzolli
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
| | - Carlo Guardiani
- FTH S.r.l., Via Sommarive 18, I-38123 Trento, Italy; (N.A.); (R.F.); (C.G.)
| | - Cristina Potrich
- Center for Sensors & Devices, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Trento, Italy; (L.L.); (G.P.); (L.V.); (C.P.)
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via alla Cascata 56/C, I-38123 Trento, Italy
| |
Collapse
|
4
|
Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. ASIAN BIOMED 2023; 17:250-266. [PMID: 38161347 PMCID: PMC10754503 DOI: 10.2478/abm-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
Collapse
Affiliation(s)
- Kumaravel Vealan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Sharizah Alimat
- Department of Chemistry Malaysia, Ministry of Science, Technology and Innovation, Petaling Jaya46661, Selangor, Malaysia
| | - Anandi S. Karumbati
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore560065, India
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| |
Collapse
|
5
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
6
|
Scarsi A, Pedone D, Pompa PP. A multi-line platinum nanozyme-based lateral flow device for the colorimetric evaluation of total antioxidant capacity in different matrices. NANOSCALE ADVANCES 2023; 5:2167-2174. [PMID: 37056622 PMCID: PMC10089119 DOI: 10.1039/d2na00931e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
The evaluation of Total Antioxidant Capacity (TAC), namely the complete pattern of antioxidant species in a complex medium, is of major interest in many fields ranging from health monitoring to quality control in the food industry. In this framework, point-of-care (POC) testing technologies are a promising diagnostic solution for rapid on-site analyses, unlike laboratory based-assays, which are often limited by centralized analyses, time-consuming and costly procedures, and invasiveness in the case of health diagnostics. In this work, we developed a POC methodology that evaluates TAC in different matrices, exploiting the peroxidase-like properties of 5 nm platinum nanoparticles (PtNPs), combined with a colorimetric paper-based device. Notably, we designed and optimized a multi-line PtNPs-based Lateral Flow Assay (LFA), which relies on three sequential test lines with increasing concentrations of platinum nanozymes, to get a non-invasive, accurate, and fast (10 minutes) colorimetric evaluation of the body TAC in saliva samples. Furthermore, we employed the device as a prototype of a quality control tool in the food industry, for the determination of the TAC in fruit juices.
Collapse
Affiliation(s)
- Anna Scarsi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163-Genova Italy
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146-Genova Italy
| | - Deborah Pedone
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163-Genova Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163-Genova Italy
| |
Collapse
|
7
|
Luo Y, Luo H, Zou S, Jiang J, Duan D, Chen L, Gao L. An In Situ Study on Nanozyme Performance to Optimize Nanozyme-Strip for Aβ Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:3414. [PMID: 37050473 PMCID: PMC10098967 DOI: 10.3390/s23073414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The nanozyme-strip is a novel POCT technology which is different from the conventional colloidal gold strip. It primarily utilizes the catalytic activity of nanozyme to achieve a high-sensitivity detection of target by amplifying the detection signal. However, previous research has chiefly focused on optimizing nanozyme-strip from the perspective of increasing nanozyme activity, little is known about other physicochemical factors. In this work, three sizes of Fe3O4 nanozyme and three sizes of CoFe2O4 nanozyme were used to investigate the key factors of nanozyme-strip for optimizing and improving its detection performance. We found that three sizes of Fe3O4 nanozyme all gather at the bottom of the nitrocellulose (NC) membrane, and three sizes of CoFe2O4 nanozyme migrate smoothly on the NC membrane, respectively. After color development, the surface of NC membranes distributed with CoFe2O4 peroxidase nanozymes had significant color change. Experimental results show that CoFe2O4 nanozymes had better dispersity than Fe3O4 nanozymes in an aqueous solution. We observed that CoFe2O4 nanozymes with smaller particle size migrated to the middle of the NC membrane with a higher number of particles. According to the results above, 55 ± 6 nm CoFe2O4 nanozyme was selected to prepare the nanozyme probe and achieved a highly sensitive detection of Aβ42Os on the nanozyme-strip. These results suggest that nanozyme should be comprehensively evaluated in its dispersity, the migration on NC membrane, and the peroxidase-like activity to determine whether it can be applied to nanozyme-strip.
Collapse
Affiliation(s)
- Yaying Luo
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiming Luo
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sijia Zou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Demin Duan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Manzoor Y, Hasan M, Zafar A, Dilshad M, Ahmed MM, Tariq T, Hassan SG, Hassan SG, Shaheen A, Caprioli G, Shu X. Incubating Green Synthesized Iron Oxide Nanorods for Proteomics-Derived Motif Exploration: A Fusion to Deep Learning Oncogenesis. ACS OMEGA 2022; 7:47996-48006. [PMID: 36591177 PMCID: PMC9798745 DOI: 10.1021/acsomega.2c05948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The nanotechnological arena has revolutionized the diagnostic efficacies by investigating the protein corona. This displays provoking proficiencies in determining biomarkers and diagnostic fingerprints for early detection and advanced therapeutics. The green synthesized iron oxide nanoparticles were prepared via Withania coagulans and were well characterized using UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and nano-LC mass spectrophotometry. Iron oxides were rod-shaped with an average size of 17.32 nm and have crystalline properties. The as-synthesized nanotool mediated firm nano biointeraction with the proteins in treatment with nine different cancers. The resultant of the proteome series was filtered oddly that highlighted the variant proteins within the differentially expressed proteins on behalf of nano-bioinformatics. Further magnification focused on S13_N, RS15, RAB, and 14_3_3 domains and few abundant motifs that aid scanning biomarkers. The entire set of variant proteins contracting to common proteins elucidates the underlining mechanical proteins that are marginally assessed using the robotic nanotechnology. Additionally, the iron rods indirectly possess a prognostic effect in manipulating expression of proteins through a smarter route. Thereby, such biologically designed nanotools provide a dual approach for medical studies.
Collapse
Affiliation(s)
- Yasmeen Manzoor
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
- College of
Chemistry and Chemical Engineering, Zhongkai
Agriculture University and Engineering Guangzhou, Guangzhou 510225, PR China
| | - Ayesha Zafar
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 510225, PR China
| | - Momina Dilshad
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department
of Bioinformatics, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahzad Gul Hassan
- National
Institute of Cardiovascular Diseases (NICVD) Cantonment, Karachi 75510, Pakistan
| | - Shahbaz Gul Hassan
- College
of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Aqeela Shaheen
- Deaprtment
of Chemistry, Govt, Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Xugang Shu
- College of
Chemistry and Chemical Engineering, Zhongkai
Agriculture University and Engineering Guangzhou, Guangzhou 510225, PR China
| |
Collapse
|
9
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
11
|
Bragina VA, Khomyakova E, Orlov AV, Znoyko SL, Mochalova EN, Paniushkina L, Shender VO, Erbes T, Evtushenko EG, Bagrov DV, Lavrenova VN, Nazarenko I, Nikitin PI. Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1579. [PMID: 35564289 PMCID: PMC9101557 DOI: 10.3390/nano12091579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are promising agents for liquid biopsy-a non-invasive approach for the diagnosis of cancer and evaluation of therapy response. However, EV potential is limited by the lack of sufficiently sensitive, time-, and cost-efficient methods for their registration. This research aimed at developing a highly sensitive and easy-to-use immunochromatographic tool based on magnetic nanoparticles for EV quantification. The tool is demonstrated by detection of EVs isolated from cell culture supernatants and various body fluids using characteristic biomarkers, CD9 and CD81, and a tumor-associated marker-epithelial cell adhesion molecules. The detection limit of 3.7 × 105 EV/µL is one to two orders better than the most sensitive traditional lateral flow system and commercial ELISA kits. The detection specificity is ensured by an isotype control line on the test strip. The tool's advantages are due to the spatial quantification of EV-bound magnetic nanolabels within the strip volume by an original electronic technique. The inexpensive tool, promising for liquid biopsy in daily clinical routines, can be extended to other relevant biomarkers.
Collapse
Affiliation(s)
- Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elena Khomyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elizaveta N. Mochalova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Victoria O. Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Evgeniy G. Evtushenko
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Dmitry V. Bagrov
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Victoria N. Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
12
|
Orlov AV, Malkerov JA, Novichikhin DO, Znoyko SL, Nikitin PI. Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. Int J Mol Sci 2022; 23:4474. [PMID: 35562865 PMCID: PMC9102693 DOI: 10.3390/ijms23094474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Express and highly sensitive immunoassays for the quantitative registration of cardiac troponin I (cTnI) are in high demand for early point-of-care differential diagnosis of acute myocardial infarction. The selection of antibodies that feature rapid and tight binding with antigens is crucial for immunoassay rate and sensitivity. A method is presented for the selection of the most promising clones for advanced immunoassays via simultaneous characterization of interaction kinetics of different monoclonal antibodies (mAb) using a direct label-free method of multiplex spectral correlation interferometry. mAb-cTnI interactions were real-time registered on an epoxy-modified microarray glass sensor chip that did not require activation. The covalent immobilization of mAb microdots on its surface provided versatility, convenience, and virtually unlimited multiplexing potential. The kinetics of tracer antibody interaction with the “cTnI—capture antibody” complex was characterized. Algorithms are shown for excluding mutual competition of the tracer/capture antibodies and selecting the optimal pairs for different assay formats. Using the selected mAbs, a lateral flow assay was developed for rapid quantitative cTnI determination based on electronic detection of functionalized magnetic nanoparticles applied as labels (detection limit—0.08 ng/mL, dynamic range > 3 orders). The method can be extended to other molecular biomarkers for high-throughput screening of mAbs and rational development of immunoassays.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Juri A. Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Denis O. Novichikhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
13
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|