1
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Logrado AL, Cassiano TDSA, da Cunha WF, Gargano R, E Silva GM, de Oliveira Neto PH. Width effects on bilayer graphene nanoribbon polarons. Phys Chem Chem Phys 2024; 26:14948-14959. [PMID: 38739011 DOI: 10.1039/d4cp00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Recent progress in nanoelectronics suggests that stacking armchair graphene nanoribbons (AGNRs) into bilayer systems can generate materials with emergent quasiparticle properties. In this context, the impact of width changes is especially relevant. However, its effect on charged carriers remains elusive. In this work, we investigate the effect of width and interlayer interaction changes on polaron states via a hybrid Hamiltonian that couples the electronic and lattice interactions. Results show the rising of two interlayer polarons: the non-symmetric and the symmetric. The coupling strength needed to induce the transition between states depends on the nanoribbon width, being at the most extreme case of ≈174 meV. Electronic properties such as the coupling strength threshold, carrier size, and gap are shown to respect the AGNR width family 3p, 3p + 1, and 3p + 2 rule. The findings demonstrate that strong interlayer interaction simultaneously delocalizes the carriers and reduces the gap up to 0.6 eV. Additionally, it is found that some layers are more prone to share charge, indicating a potential heterogeneous stacking where a particular electronic pathway is favored. The results present an encouraging prospect for integrating AGNR bilayers in future flexible electronics.
Collapse
Affiliation(s)
- André Lima Logrado
- Institute of Physics, University of Brasília, 70919-970, Brasília, Brazil.
| | | | | | - Ricardo Gargano
- Institute of Physics, University of Brasília, 70919-970, Brasília, Brazil.
| | | | - Pedro Henrique de Oliveira Neto
- Institute of Physics, University of Brasília, 70919-970, Brasília, Brazil.
- International Center of Physics, University of Brasília, 70919-970, Brazil
| |
Collapse
|
3
|
Zhang S, Wu C, Zhao Z, Xu K. An Electrochemical Immunosensor Based on Chitosan-Graphene Nanosheets for Aflatoxin B1 Detection in Corn. Molecules 2024; 29:1461. [PMID: 38611741 PMCID: PMC11013039 DOI: 10.3390/molecules29071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
We reported a highly efficient electrochemical immunosensor utilizing chitosan-graphene nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody immobilization. The electrochemical characterization was conducted utilizing both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The results showed that the current change (ΔI) before and after the immunoreaction demonstrated a strong linear relationship (R2=0.990) with the AFB1 concentration, as well as good specificity and stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL (S/N=3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn samples, showing a promising performance using an efficient method, and indicating a remarkable prospect for the detection of fungal toxins in grains.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Caizhang Wu
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Zhike Zhao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Kun Xu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
4
|
Tomar P. Impact of nanotechnology at heterogeneous interphases @ Sustainability. Heliyon 2024; 10:e26943. [PMID: 38449639 PMCID: PMC10915510 DOI: 10.1016/j.heliyon.2024.e26943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The 21st century information and communication industries have played the pivotal role of bio-sensing technologies, refining privacy policies for human performance, facilitating scientific innovation, shaping e-governance, and reinforcing public confidence using nanotechnology. Human body is a thermodynamic heat engine in providing effective mechanical work as a function of psyche, conventional fuel transformation into enriched protein meal, and balancing of work-life fulcrum. The triboelectric effect of rubbing surfaces, interfaces, and interphases is invincible from the large field of the planet to nanodomains.
Collapse
|
5
|
Wei Y, Bao R, Hu L, Geng Y, Chen X, Wen Y, Wang Y, Qin M, Zhang Y, Liu X. Ti 3C 2 (MXene) nanosheets disrupt spermatogenesis in male mice mediated by the ATM/p53 signaling pathway. Biol Direct 2023; 18:30. [PMID: 37312207 DOI: 10.1186/s13062-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Two-dimensional ultrathin Ti3C2 nanosheets are increasingly being used in biomedical applications owing to their special physicochemical properties. But, the biological effects of its exposure on the reproductive system is still unclear. This study evaluated the reproductive toxicity of Ti3C2 nanosheets in the testes. RESULTS Ti3C2 nanosheets at doses of 2.5 mg/kg bw and 5 mg/kg bw in mice caused defects in spermatogenic function, and we also clarified an underlying molecular mechanism of it in vivo and in vitro model. Ti3C2 nanosheets induced an increase of reactive oxygen species (ROS) in testicular and GC-1 cells, which in turn led to the imbalance in oxidative and antioxidant systems (also known as oxidative stress). Additionally, oxidative stress often induces cellular DNA strand damages via the oxidative DNA damages, which triggered cell cycle arrest in the G1/G0 phase, leading to cell proliferation inhibition and irreversible apoptosis. ATM/p53 signaling manifest key role in DNA damage repair (DDR), and we demonstrate that ATM/p53 signaling was activated, and mediated the toxic damage process caused by Ti3C2 nanosheet exposure. CONCLUSION Ti3C2 nanosheet-induced disruption of proliferation and apoptosis of spermatogonia perturbed normal spermatogenic function that was mediated by ATM/p53 signaling pathway. Our findings shed more light on the mechanisms of male reproductive toxicity induced by Ti3C2 nanosheets.
Collapse
Affiliation(s)
- Yang Wei
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ruilin Bao
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Le Hu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, People's Republic of China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
- College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixian Wen
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mao Qin
- Department of Andrology, Women and Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yue Zhang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
- College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Xueqing Liu
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Kharlamova MV, Kramberger C. Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091458. [PMID: 37177003 PMCID: PMC10180519 DOI: 10.3390/nano13091458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The cytotoxicity of carbon nanomaterials is a very important issue for microorganisms, animals, and humans. Here, we discuss the issues of cytotoxicity of carbon nanomaterials, carbon nanotubes, graphene, fullerene, and dots. Cytotoxicity issues, such as cell viability and drug release, are considered. The main part of the review is dedicated to important cell viability issues. They are presented for A549 human melanoma, E. coli, osteosarcoma, U2-OS, SAOS-2, MG63, U87, and U118 cell lines. Then, important drug release issues are discussed. Bioimaging results are shown here to illustrate the use of carbon derivatives as markers in any type of imaging used in vivo/in vitro. Finally, perspectives of the field are presented. The important issue is single-cell viability. It can allow a correlation of the functionality of organelles of single cells with the development of cancer. Such organelles are mitochondria, nuclei, vacuoles, and reticulum. It allows for finding biochemical evidence of cancer prevention in single cells. The development of investigation methods for single-cell level detection of viability stimulates the cytotoxicity investigative field. The development of single-cell microscopy is needed to improve the resolution and accuracy of investigations. The importance of cytotoxicity is drug release. It is important to control the amount of drug that is released. This is performed with pH, temperature, and electric stimulation. Further development of drug loading and bioimaging is important to decrease the cytotoxicity of carbon nanomaterials. We hope that this review is useful for researchers from all disciplines across the world.
Collapse
Affiliation(s)
- Marianna V Kharlamova
- Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
7
|
Vidhani DV, Ubeda R, Sautie T, Vidhani D, Mariappan M. Zwitterionic Bergman cyclization triggered polymerization gives access to metal-graphene nanoribbons using a boron metal couple. Commun Chem 2023; 6:66. [PMID: 37029210 PMCID: PMC10082089 DOI: 10.1038/s42004-023-00866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
With the rapid growth in artificial intelligence, designing high-speed and low-power semiconducting materials is of utmost importance. This investigation provides a theoretical basis to access covalently bonded transition metal-graphene nanoribbon (TM-GNR) hybrid semiconductors whose DFT-computed bandgaps were much narrower than the commonly used pentacene. Systematic optimization of substrates containing remotely placed boryl groups and the transition metals produced the zwitterions via ionic Bergman cyclization (i-BC) and unlocked the polymerization of metal-substituted polyenynes. Aside from i-BC, the subsequent steps were barrierless, which involved structureless transition regions. Multivariate analysis revealed the strong dependence of activation energy and the cyclization mode on the electronic nature of boron and Au(I). Consequently, three regions corresponding to radical Bergman (r-BC), ionic Bergman (i-BC), and ionic Schreiner-Pascal (i-SP) cyclizations were identified. The boundaries between these regions corresponded to the mechanistic shift induced by the three-center-three-electron (3c-3e) hydrogen bond, three-center-four-electron (3c-4e) hydrogen bond, and vacant p-orbital on boron. The ideal combination for cascade polymerization was observed near the boundary between i-BC and i-SP.
Collapse
Affiliation(s)
- Dinesh V Vidhani
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA.
| | - Rosemary Ubeda
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Thalia Sautie
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Diana Vidhani
- Miami Dade Virtual School, 560 NW 151st, Miami, FL, 33169, USA
| | - Manoharan Mariappan
- Department of Natural Science North Florida College, 325 Turner Davis Dr, Madison, FL, 32340, USA
| |
Collapse
|
8
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
9
|
Feng X, Ning Y, Wu Z, Li Z, Xu C, Li G, Hu Z. Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1089. [PMID: 36985983 PMCID: PMC10058110 DOI: 10.3390/nano13061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Owing to the high efficiency and specificity in moderate conditions, enzymatic biofuel cells (EBFCs) have gained significant interest as a promising energy source for wearable devices. However, the instability of the bioelectrode and the lack of efficient electrical communication between the enzymes and electrodes are the main obstacles. Herein, defect-enriched 3D graphene nanoribbons (GNRs) frameworks are fabricated by unzipping multiwall carbon nanotubes, followed by thermal annealing. It is found that defective carbon shows stronger adsorption energy towards the polar mediators than the pristine carbon, which is beneficial to improving the stability of the bioelectrodes. Consequently, the EBFCs equipped with the GNRs exhibit a significantly enhanced bioelectrocatalytic performance and operational stability, delivering an open-circuit voltage and power density of 0.62 V, 70.7 μW/cm2, and 0.58 V, 18.6 μW/cm2 in phosphate buffer solution and artificial tear, respectively, which represent the high levels among the reported literature. This work provides a design principle according to which defective carbon materials could be more suitable for the immobilization of biocatalytic components in the application of EBFCs.
Collapse
Affiliation(s)
- Xiaoyu Feng
- College of Textiles and Clothing, Xinjiang University, Urumqi 830046, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongyue Ning
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Cuixing Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gangyong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
10
|
Tatarskiy VV, Zakharova OV, Baranchikov PA, Muratov DS, Kuznetsov DV, Gusev AA. Graphene Oxide Nanosurface Reduces Apoptotic Death of HCT116 Colon Carcinoma Cells Induced by Zirconium Trisulfide Nanoribbons. Int J Mol Sci 2023; 24:ijms24032783. [PMID: 36769100 PMCID: PMC9917542 DOI: 10.3390/ijms24032783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Due to their chemical, mechanical, and optical properties, 2D ultrathin nanomaterials have significant potential in biomedicine. However, the cytotoxicity of such materials, including their mutual increase or decrease, is still not well understood. We studied the effects that graphene oxide (GO) nanolayers (with dimensions 0.1-3 μm and average individual flake thickness less than 1 nm) and ZrS3 nanoribbons (length more than 10 μm, width 0.4-3 μm, and thickness 50-120 nm) have on the viability, cell cycle, and cell death of HCT116 colon carcinoma cells. We found that ZrS3 exhibited strong cytotoxicity by causing apoptotic cell death, which was in contrast to GO. When adding GO to ZrS3, ZrS3 was significantly less toxic, which may be because GO inhibits the effects of cytotoxic hydrogen sulfide produced by ZrS3. Thus, using zirconium trisulfide nanoribbons as an example, we have demonstrated the ability of graphene oxide to reduce the cytotoxicity of another nanomaterial, which may be of practical importance in biomedicine, including the development of biocompatible nanocoatings for scaffolds, theranostic nanostructures, and others.
Collapse
Affiliation(s)
- Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Olga V. Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Peter A. Baranchikov
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Dmitry S. Muratov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Scientific School “Chemistry and Technology of Polymer Materials”, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Denis V. Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Alexander A. Gusev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-910-756-4546
| |
Collapse
|
11
|
Liu J, Zhao W, Song F, Huang C, Zhang Z, Cao Y. Graphene oxide exposure suppresses immune responses and increases the sensitivities of zebrafishes to lipopolysaccharides via the down-regulation of Toll-like receptors. ECOLOGICAL INDICATORS 2022; 144:109563. [DOI: 10.1016/j.ecolind.2022.109563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
|
12
|
Gusev AA. Frontiers in Nanotoxicology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3219. [PMID: 36145005 PMCID: PMC9505498 DOI: 10.3390/nano12183219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The Special Issue of Nanomaterials "Frontiers in Nanotoxicology" highlights the modern problems of nanotoxicology and nanobiomedicine, including the toxicity of metal-based, silicon-based, carbon-based, and other types of nanoparticles, occupational safety of nanoproduction workers, comprehensive assessment on new biomedical nanomaterials, improvement of nanotoxicology methods, as well as the current state and prospects of research in the fields of theoretical, experimental, and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles activated by a low-frequency non-heating alternating magnetic field, biomedical applications and the toxicity of graphene nanoribbons, and fetotoxicity of nanoparticles [...].
Collapse
Affiliation(s)
- Alexander A. Gusev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; ; Tel.: +7-910-756-4546
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ”MISIS”, 119991 Moscow, Russia
| |
Collapse
|
13
|
Zhang Y, Zhang Y, Yang Z, Fan Y, Chen M, Zhao M, Dai B, Zheng L, Zhang D. Cytotoxicity Effect of Iron Oxide (Fe3O4)/Graphene Oxide (GO) Nanosheets in Cultured HBE Cells. Front Chem 2022; 10:888033. [PMID: 35615314 PMCID: PMC9124895 DOI: 10.3389/fchem.2022.888033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Iron oxide (Fe3O4), a classical magnetic material, has been widely utilized in the field of biological magnetic resonance imaging Graphene oxide (GO) has also been extensively applied as a drug carrier due to its high specific surface area and other properties. Recently, numerous studies have synthesized Fe3O4/GO nanomaterials for biological diagnosis and treatments, including photothermal therapy and magnetic thermal therapy. However, the biosafety of the synthesized Fe3O4/GO nanomaterials still needs to be further identified. Therefore, this research intended to ascertain the cytotoxicity of Fe3O4/GO after treatment with different conditions in HBE cells. The results indicated the time-dependent and concentration-dependent cytotoxicity of Fe3O4/GO. Meanwhile, exposure to Fe3O4/GO nanomaterials increased reactive oxygen species (ROS) levels, calcium ions levels, and oxidative stress in mitochondria produced by these nanomaterials activated Caspase-9 and Caspase-3, ultimately leading to cell apoptosis.
Collapse
Affiliation(s)
- Yule Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Yatian Zhang
- Medical College Jining Medical University, Jining, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Fan
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Mantong Zhao
- Department of Physics and Electronic Engineering, Heze University, Heze, China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Lulu Zheng, ; Dawei Zhang,
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Lulu Zheng, ; Dawei Zhang,
| |
Collapse
|
14
|
León C, Melnik R. Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering. Bioengineering (Basel) 2022; 9:90. [PMID: 35324779 PMCID: PMC8945856 DOI: 10.3390/bioengineering9030090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Shape memory materials have been playing an important role in a wide range of bioengineering applications. At the same time, recent developments of graphene-based nanostructures, such as nanoribbons, have demonstrated that, due to the unique properties of graphene, they can manifest superior electronic, thermal, mechanical, and optical characteristics ideally suited for their potential usage for the next generation of diagnostic devices, drug delivery systems, and other biomedical applications. One of the most intriguing parts of these new developments lies in the fact that certain types of such graphene nanoribbons can exhibit shape memory effects. In this paper, we apply machine learning tools to build an interatomic potential from DFT calculations for highly ordered graphene oxide nanoribbons, a material that had demonstrated shape memory effects with a recovery strain up to 14.5% for 2D layers. The graphene oxide layer can shrink to a metastable phase with lower constant lattice through the application of an electric field, and returns to the initial phase through an external mechanical force. The deformation leads to an electronic rearrangement and induces magnetization around the oxygen atoms. DFT calculations show no magnetization for sufficiently narrow nanoribbons, while the machine learning model can predict the suppression of the metastable phase for the same narrower nanoribbons. We can improve the prediction accuracy by analyzing only the evolution of the metastable phase, where no magnetization is found according to DFT calculations. The model developed here allows also us to study the evolution of the phases for wider nanoribbons, that would be computationally inaccessible through a pure DFT approach. Moreover, we extend our analysis to realistic systems that include vacancies and boron or nitrogen impurities at the oxygen atomic positions. Finally, we provide a brief overview of the current and potential applications of the materials exhibiting shape memory effects in bioengineering and biomedical fields, focusing on data-driven approaches with machine learning interatomic potentials.
Collapse
Affiliation(s)
- Carlos León
- M3AI Laboratory, MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| | - Roderick Melnik
- M3AI Laboratory, MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- BCAM—Basque Centre for Applied Mathematics, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Hydrothermal Unzipping of Multiwalled Carbon Nanotubes and Cutting of Graphene by Potassium Superoxide. NANOMATERIALS 2022; 12:nano12030447. [PMID: 35159792 PMCID: PMC8839989 DOI: 10.3390/nano12030447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022]
Abstract
The dual use of potassium superoxide (KO2) to unzip multiwalled carbon nanotubes (MWCNTs) and cut graphene under hydrothermal conditions is described in this work. The KO2-assisted hydrothermal treatment was proven to be a high-yield method for forming graphene nanoribbons and dots or sub-micro-sized graphene nanosheets. Starting with functionalized MWCNTs, the method produces water-dispersible graphene nanoribbons with characteristic photoluminescence depending on their width. Using pristine graphene, the hydrothermal treatment with KO2 produces nanosized graphene sheets and graphene quantum dots with diameters of less than 10 nm. The latter showed a bright white photoluminescence. The effective hydrothermal unzipping of MWNTs and the cutting of large graphene nanosheets is a valuable top-down approach for the preparation of graphene nanoribbons and small nanographenes. Both products with limited dimensions have interesting applications in nanoelectronics and bionanotechnology.
Collapse
|