1
|
Bendszus M, Laghi A, Munuera J, Tanenbaum LN, Taouli B, Thoeny HC. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J Magn Reson Imaging 2024; 60:1774-1785. [PMID: 38226697 DOI: 10.1002/jmri.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are routinely used in magnetic resonance imaging (MRI). They are essential for choosing the most appropriate medical or surgical strategy for patients with serious pathologies, particularly in oncologic, inflammatory, and cardiovascular diseases. However, GBCAs have been associated with an increased risk of nephrogenic systemic fibrosis in patients with renal failure, as well as the possibility of deposition in the brain, bones, and other organs, even in patients with normal renal function. Research is underway to reduce the quantity of gadolinium injected, without compromising image quality and diagnosis. The next generation of GBCAs will enable a reduction in the gadolinium dose administered. Gadopiclenol is the first of this new generation of GBCAs, with high relaxivity, thus having the potential to reduce the gadolinium dose while maintaining good in vivo stability due to its macrocyclic structure. High-stability and high-relaxivity GBCAs will be one of the solutions for reducing the dose of gadolinium to be administered in clinical practice, while the development of new technologies, including optimization of MRI acquisitions, new contrast mechanisms, and artificial intelligence may help reduce the need for GBCAs. Future solutions may involve a combination of next-generation GBCAs and image-processing techniques to optimize diagnosis and treatment planning while minimizing exposure to gadolinium. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Josep Munuera
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harriet C Thoeny
- Department of Diagnostic and Interventional Radiology, Fribourg Cantonal Hospital, Fribourg, Switzerland
- Faculty of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Chen J, Yang R, Yu H, Wu H, Wu N, Wang S, Yin X, Shi X, Wang H. Ultrasmall iron oxide nanoparticles with MRgFUS for enhanced magnetic resonance imaging of orthotopic glioblastoma. J Mater Chem B 2024; 12:4833-4842. [PMID: 38647018 DOI: 10.1039/d3tb02966b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Rui Yang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Hao Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Nan Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Suhe Wang
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
- R & D Center of Medical Artificial Intelligence and Medical Engineering, Haining Rd.100, Shanghai General Hospital, Shanghai 200080, China
- National Center for Translational Medicine (Shanghai), New Songjiang Rd.650, Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Huangjia Garden Rd. 800, Shanghai 201803, China
| |
Collapse
|
3
|
Kracíková L, Androvič L, Červený D, Jirát-Ziółkowska N, Babič M, Švábová M, Jirák D, Laga R. Iron-based compounds coordinated with phospho-polymers as biocompatible probes for dual 31P/ 1H magnetic resonance imaging and spectroscopy. Sci Rep 2024; 14:3847. [PMID: 38360883 PMCID: PMC10869799 DOI: 10.1038/s41598-024-54158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.
Collapse
Affiliation(s)
- Lucie Kracíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - David Červený
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08, Prague, Czech Republic
| | - Natalia Jirát-Ziółkowska
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08, Prague, Czech Republic
| | - Michal Babič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - Monika Švábová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117, Liberec, Czech Republic.
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic.
| |
Collapse
|
4
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Kumar A, Kulkarni S, Pandey A, Mutalik S, Subramanian S. Nano-tracers for sentinel lymph node detection: current trends in technique and application. Nanomedicine (Lond) 2024; 19:59-77. [PMID: 38197375 DOI: 10.2217/nnm-2023-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Sentinel lymph node (SLN) detection and biopsy is a critical staging component for several cancers. Apart from established methods using dyes or radiolabeled colloids, newer techniques are emerging, like near-infrared fluorescent compounds, targeted molecular radiopharmaceuticals and magnetic nano-tracers. In the overview section of this review, we categorize SLN detection tracers based on their principle of use. We discuss the merits of existing tracers and provide a glimpse of in-development formulations. A subsequent clinical section explores the expanded role of SLN detection in management of various cancers, citing current medical guidelines and the leading conclusions of long-term clinical trials. The concluding section tries to provide a perspective of promising developments and the work required to bring them to clinical fruition.
Collapse
Affiliation(s)
- Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
6
|
Kostova I. Therapeutic and Diagnostic Agents based on Bioactive Endogenous and Exogenous Coordination Compounds. Curr Med Chem 2024; 31:358-386. [PMID: 36944628 DOI: 10.2174/0929867330666230321110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Metal-based coordination compounds have very special place in bioinorganic chemistry because of their different structural arrangements and significant application in medicine. Rapid progress in this field increasingly enables the targeted design and synthesis of metal-based pharmaceutical agents that fulfill valuable roles as diagnostic or therapeutic agents. Various coordination compounds have important biological functions, both those initially present in the body (endogenous) and those entering the organisms from the external environment (exogenous): vitamins, drugs, toxic substances, etc. In the therapeutic and diagnostic practice, both the essential for all living organisms and the trace metals are used in metal-containing coordination compounds. In the current review, the most important functional biologically active compounds were classified group by group according to the position of the elements in the periodic table.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav St., Sofia 1000, Bulgaria
| |
Collapse
|
7
|
Iyad N, S.Ahmad M, Alkhatib SG, Hjouj M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur J Radiol Open 2023; 11:100503. [PMID: 37456927 PMCID: PMC10344828 DOI: 10.1016/j.ejro.2023.100503] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Contrast agents is used in magnetic resonance imaging (MRI) to improve the visibility of the details of the organ structures. Gadolinium-based contrast agent (GBCA) has been used since 1988 in MRI for diagnostic and follow-up of patients, the gadolinium good properties make it an effective choice for enhance the signal in MRI by increase its intensity and shortening the relaxation time of the proton. Recently, many studies show a gadolinium deposition in different human organs due to release of free gadolinium various body organs or tissue, which led to increased concern about the use of gadolinium agents, in this study, the potential diseases that may affect the patient and side effects that appear on the patient and related to accumulation of gadolinium were clarified, the study focused on the organs such as brain and bones in which gadolinium deposition was found and the lesions associated with it, and the diseases associated with gadolinium retention includes Nephrogenic Systemic Fibrosis (NSF) and Gadolinium deposition disease (GDD). Some studies tended to improve the contrast agents by developing a new non-gadolinium agents or development of next-generation gadolinium agents. In this review article the latest knowledge about MRI contrast agent.
Collapse
Affiliation(s)
- Nebal Iyad
- Ibn Rushd Radiology Centre, Hebron, Palestine
| | - Muntaser S.Ahmad
- Ibn Rushd Radiology Centre, Hebron, Palestine
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Sanaa G. Alkhatib
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Mohammad Hjouj
- Medical Imaging Department, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| |
Collapse
|
8
|
Gao F, Xue C, Zhang T, Zhang L, Zhu GY, Ou C, Zhang YZ, Dong X. MXene-Based Functional Platforms for Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302559. [PMID: 37142810 DOI: 10.1002/adma.202302559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Recently, 2D transition metal carbide, nitride, and carbonitrides (MXenes) materials stand out in the field of tumor therapy, particularly in the construction of functional platforms for optimal antitumor therapy due to their high specific surface area, tunable performance, strong absorption of near-infrared light as well as preferable surface plasmon resonance effect. In this review, the progress of MXene-mediated antitumor therapy is summarized after appropriate modifications or integration procedures. The enhanced antitumor treatments directly performed by MXenes, the significant improving effect of MXenes on different antitumor therapies, as well as the MXene-mediated imaging-guided antitumor strategies are discussed in detail. Moreover, the existing challenges and future development directions of MXenes in tumor therapy are presented.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lu Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guo-Yin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
9
|
Szűcsová J, Zeleňáková A, Beňová E, Nagy Ľ, Orendáč M, Huntošová V, Šoltésová M, Kohout J, Herynek V, Zeleňák V. Nanocomposite based on Gd 2O 3 nanoparticles and drug 5-fluorouracil as potential theranostic nano-cargo system. Heliyon 2023; 9:e20975. [PMID: 37928043 PMCID: PMC10623176 DOI: 10.1016/j.heliyon.2023.e20975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
We have prepared silica matrix with hexagonal symmetry of pores (SBA-15) and loaded it with anticancer drug 5-Fluorouracil (5-FU) to promote it as a drug delivery system. Gd2O3 nanoparticles were incorporated into the matrix to enhance nanosystems applicability as contrast agent for MRI, thus enabled this nanocomposite to be used as multifunctional nano-based therapeutic agent. Drug release profile was obtained by UV-VIS spectroscopy, and it indicates the prolongated release of 5-FU during the first hours and the total release after 5 h. The cytotoxicity tests using MTT-assay, fluorescent microscopy, bright-field microscopy, and flow cytometry were carried out using human glioma U87 MG cells and SK BR 3 cells. The nanocomposite with anticancer drug (Gd2O3/SBA-15/5FU) showed toxic behaviour towards studied cells, unlike nanocomposite without drug (Gd2O3/SBA-15) that was non-toxic. Our drug delivery system was designed to minimalize negative effect of Gd3+ ions at magnetic resonance imaging and drug 5-FU on healthy cells due to their encapsulation into biocompatible silica matrix, so the Gd3+ ions are more stable (in comparison to chelates), lower therapeutic dose of 5-FU is needed and its prolongated release from silica pores was confirmed. Very good T1 contrast in MR images was observed even at low concentrations, thus this nanosystem can be potentially used as contrast imaging agent.
Collapse
Affiliation(s)
- Jaroslava Szűcsová
- Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Adriana Zeleňáková
- Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Eva Beňová
- Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 040 01 Kosice, Slovakia
| | - Ľuboš Nagy
- Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Martin Orendáč
- Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 040 01 Kosice, Slovakia
- Department of Solid State Engineering, University of Chemistry & Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, Jesenná 5, 040 01 Kosice, Slovakia
| | - Mária Šoltésová
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 182 00 Prague, Czech Republic
| | - Jaroslav Kohout
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 182 00 Prague, Czech Republic
| | - Vít Herynek
- First Faculty of Medicine, Charles University, Center for Advanced Preclinical Imaging (CAPI), Salmovská 3, 120 00 Prague, Czech Republic
| | - Vladimír Zeleňák
- Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 040 01 Kosice, Slovakia
| |
Collapse
|
10
|
Smirnov AN, Solomonik VG. A route to high-accuracy ab initio description of electronic excited states in high-spin lanthanide-containing species: A case study of GdO. J Chem Phys 2023; 159:164304. [PMID: 37877487 DOI: 10.1063/5.0173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Accurate description of electronic excited states of high-spin molecular species is a yet unsolved problem in modern electronic structure theory. A composite computational scheme developed in the present work contributes to solving this task for a challenging case of lanthanide-containing molecules. In the scheme, the highest-spin states whose wavefunctions are dominated by a single Slater determinant are described at the single-reference (SR) CCSD(T) level, whereas the lower-spin states, being inherently multiconfigurational in their nature, are treated with multireference (MR) methods, MRCI and/or CASPT2. An original technique which scales MR results against SR CCSD(T) ones to improve the accuracy in the former is proposed and examined, taking the example of 12 electronic states of gadolinium monoxide, X9Σ-, Y7Σ-, A'9Δ, A1'7Δ, A9Π, A17Π, B9Σ-, B17Σ-, C9Π, C17Π, D9Σ-, and D17Σ-, up to 35 000 cm-1. A multitude of the corresponding Ω (spin-coupled) states was then studied within the state-interacting approach employing the full Breit-Pauli spin-orbit coupling operator with CASSCF-generated ΛS states as a basis. For all ΛS and Ω states, the Gd-O bond lengths, spectroscopic constants ωe, ωexe, αe, and adiabatic excitation energies are obtained. The theoretical predictions are in good agreement with the experimental data, with deviations in excitation energies not exceeding 350 cm-1 (1 kcal/mol). The spectroscopic properties of the yet unobserved electronic states, A'9Δ, A1'7Δ, C9Π, C17Π, D9Σ-, and D17Σ-, are evaluated for the first time.
Collapse
Affiliation(s)
- Alexander N Smirnov
- Department of Physics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Victor G Solomonik
- Department of Physics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| |
Collapse
|
11
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Straubinger R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-Responsive Upconversion Mesoporous Silica Nanospheres for Combined Multimodal Diagnostic Imaging and Targeted Photodynamic and Photothermal Cancer Therapy. ACS NANO 2023; 17:18979-18999. [PMID: 37702397 PMCID: PMC10569106 DOI: 10.1021/acsnano.3c04564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have gained considerable attention as potential alternatives to conventional cancer treatments. However, these approaches remain limited by low solubility, poor stability, and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome the aforementioned limitations, we engineered biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium, and gadolinium) and the PTA bismuth selenide (NaYF4:Yb/Er/Gd,Bi2Se3) enveloped in a mesoporous silica shell that encapsulates a PS, chlorin e6 (Ce6), within its pores. NaYF4:Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites Ce6 to generate cytotoxic reactive oxygen species (ROS), while Bi2Se3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging of the nanospheres. The mesoporous silica shell is coated with DPPC/cholesterol/DSPE-PEG to retain the encapsulated Ce6 and prevent serum protein adsorption and macrophage recognition that hinder tumor targeting. Finally, the coat is conjugated to the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into malignant cells in the mildly acidic microenvironment of tumors. The nanospheres facilitated tumor magnetic resonance and thermal and fluorescence imaging and exhibited potent NIR laser light-induced anticancer effects in vitro and in vivo via combined ROS production and localized hyperthermia, with negligible toxicity to healthy tissue, hence markedly extending survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Mona Kalmouni
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Tatiana Houhou
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Osama Abdullah
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Liaqat Ali
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Renu Pasricha
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Rainer Straubinger
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Sneha Thomas
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Ahmed Jawaad Afzal
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Francisco N. Barrera
- Department
of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Mazin Magzoub
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| |
Collapse
|
12
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
13
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
14
|
Tyutrina VA, Andreeva ES, Titov EA, Vokina VA, Novikov MA, Sosedova LM. In Vivo and In Vitro Analysis of Toxicity of a Prospective Magnetic Resonance Contrast Agent Based on Arabinogalactan and Gadolinium Nanocomposite. Bull Exp Biol Med 2023; 175:695-699. [PMID: 37861900 DOI: 10.1007/s10517-023-05928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 10/21/2023]
Abstract
We studied the cytotoxic effect of gadolinium nanocomposite on cultured mouse fibroblasts 3T3-SV40 and histological changes in the liver tissue of albino rats after its administration. For in vitro experiment, gadolinium nanocomposite on the natural matrix of arabinogalactan (nGd-AG) was dissolved in DMEM nutrient medium to concentrations of 0.005, 0.02, 0.5, 2, and 5 mM. In in vivo experiment, a nGd-AG solution was orally administered to rats through a tube in a dose of 500 μg Gd/kg in 1 ml of 0.9% NaCl for 10 days. The pattern and degree of influence of the gadolinium nanocomposite on the studied cell culture depended on the concentration and duration of exposure. IC50 of nGd-AG determined after cell incubation for 24, 48, and 72 h were 616 μg/kg (3.9 mM), 302 μg/kg (1.9 mM), and 222 μg/kg (1.4 mM), respectively. Histological changes in the liver of white rats induced by exposure to nanocomposite attested to the development of a compensatory reaction of the organ.
Collapse
Affiliation(s)
- V A Tyutrina
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia.
| | - E S Andreeva
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia
| | - E A Titov
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia
| | - V A Vokina
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia
| | - M A Novikov
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia
| | - L M Sosedova
- Siberian Institute of Medical and Environmental Research, Angarsk, Russia
| |
Collapse
|
15
|
Xu L, Ren Z, Li G, Xu D, Miao J, Ju J, Mo X, Wang X, Deng H, Xu M. Liver-targeting MRI contrast agent based on galactose functionalized o-carboxymethyl chitosan. Front Bioeng Biotechnol 2023; 11:1134665. [PMID: 37284241 PMCID: PMC10239977 DOI: 10.3389/fbioe.2023.1134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Commercial gadolinium (Gd)-based contrast agents (GBCAs) play important role in clinical diagnostic of hepatocellular carcinoma, but their diagnostic efficacy remained improved. As small molecules, the imaging contrast and window of GBCAs is limited by low liver targeting and retention. Herein, we developed a liver-targeting gadolinium (Ⅲ) chelated macromolecular MRI contrast agent based on galactose functionalized o-carboxymethyl chitosan, namely, CS-Ga-(Gd-DTPA)n, to improve hepatocyte uptake and liver retention. Compared to Gd-DTPA and non-specific macromolecular agent CS-(Gd-DTPA)n, CS-Ga-(Gd-DTPA)n showed higher hepatocyte uptake, excellent cell and blood biocompatibility in vitro. Furthermore, CS-Ga-(Gd-DTPA)n also exhibited higher relaxivity in vitro, prolonged retention and better T1-weighted signal enhancement in liver. At 10 days post-injection of CS-Ga-(Gd-DTPA)n at a dose of 0.03 mM Gd/Kg, Gd had a little accumulation in liver with no liver function damage. The good performance of CS-Ga-(Gd-DTPA)n gives great confidence in developing liver-specifc MRI contrast agents for clinical translation.
Collapse
Affiliation(s)
- Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanying Ren
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Southern University of Science and Technology, Shenzhen, China
| | - Guolin Li
- Department of Stomatology, Shanghai 8th People’s Hospital, Shanghai, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Shariati A, Ebrahimi T, Babadinia P, Shariati FS, Ahangari Cohan R. Synthesis and characterization of Gd 3+-loaded hyaluronic acid-polydopamine nanoparticles as a dual contrast agent for CT and MRI scans. Sci Rep 2023; 13:4520. [PMID: 36934115 PMCID: PMC10024681 DOI: 10.1038/s41598-023-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Magnetic resonance imaging and computed tomography (CT) suffer from low contrast sensitivity and potential toxicity of contrast agents. To overcome these limitations, we developed and tested a new class of dual contrast agents based on polydopamine nanoparticles (PDA-NPs) that are functionalized and targeted with hyaluronic acid (HA). These nanoparticles (NPs) are chelated with Gd3+ to provide suitable contrast. The targeted NPs were characterized through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), infrared Fourier transform (FTIR), and dynamic light scattering (DLS). The cytotoxicity was investigated on HEK293 cells using an MTT assay. The contrast property of synthesized Gd3+/PDA/HA was compared with Barium sulfate and Dotarem, as commercial contrast agents (CAs) for CT and MRI, respectively. The results illustrated that synthesized PDA-NPs have a spherical morphology and an average diameter of 72 nm. A distinct absorption peak around 280 nm in the UV-vis spectrum reported the self-polymerization of PDA-NPs. The HA coating on PDA-NPs was revealed through a shift in the FTIR peak of C=O from 1618 cm-1 to 1635 cm-1. The Gd3+ adsorption on PDA/HA-NPs was confirmed using an adsorption isotherm assay. The developed CA showed low in vitro toxicity (up to 158.98 µM), and created a similar contrast in MRI and CT when compared to the commercial agents. The r1 value for PDA/HA/Gd3+ (6.5 (mg/ml)-1 s-1) was more than Dotarem (5.6 (mg/ml)-1 s-1) and the results of the hemolysis test showed that at concentrations of 2, 4, 6, and 10 mg/ml, the hemolysis rate of red blood cells is very low. Additionally, the results demonstrated that PDA/HA/Gd3+ could better target the CD44+-expressing cancer cells than PDA/Gd3+. Thus, it can be concluded that lower doses of developed CA are needed to achieve similar contrast of Dotarem, and the developed CA has no safety concerns in terms of hemolysis. The stability of PDA/HA/Gd3+ has also been evaluated by ICP-OES, zeta potential, and DLS during 3 days, and the results suggested that Gd-HA NPs were stable.
Collapse
Affiliation(s)
- Alireza Shariati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parva Babadinia
- Farzanegan High School, National Organization for Development of Exceptional Talents, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Williams DF. The plasticity of biocompatibility. Biomaterials 2023; 296:122077. [PMID: 36907003 DOI: 10.1016/j.biomaterials.2023.122077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Biocompatibility concerns the phenomena that occur within the interactions between biomaterials and human patients, which ultimately control the performance of many facets of medical technology. It involves aspects of materials science, many different forms of engineering and nanotechnology, chemistry, biophysics, molecular and cellular biology, immunology, pathology and a myriad of clinical applications. It is not surprising that an overarching framework of mechanisms of biocompatibility has been difficult to elucidate and validate. This essay discusses one fundamental reason for this; we have tended to consider biocompatibility pathways as essentially linear sequences of events which follow well-understood processes of materials science and biology. The reality, however, is that the pathways may involve a great deal of plasticity, in which many additional idiosyncratic factors, including those of genetic, epigenetic and viral origin, exert influence, as do complex mechanical, physical and pharmacological variables. Plasticity is an inherent core feature of the performance of synthetic materials; here we follow the more recent biological applications of plasticity concepts into the sphere of biocompatibility pathways. A straightforward linear pathway may result in successful outcomes for many patients; we may describe this in terms of classic biocompatibility pathways. In other situations, which usually command much more attention because of their unsuccessful outcomes, these plasticity-driven processes follow alternative biocompatibility pathways; often, the variability in outcomes with identical technologies is due to biological plasticity rather than material or device deficiency.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
18
|
Cressoni C, Vurro F, Milan E, Muccilli M, Mazzer F, Gerosa M, Boschi F, Spinelli AE, Badocco D, Pastore P, Delgado NF, Collado MH, Marzola P, Speghini A. From Nanothermometry to Bioimaging: Lanthanide-Activated KY 3F 10 Nanostructures as Biocompatible Multifunctional Tools for Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12171-12188. [PMID: 36826830 PMCID: PMC9999348 DOI: 10.1021/acsami.2c22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federica Vurro
- Division
of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- University
Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Emil Milan
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matilde Muccilli
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesco Mazzer
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marco Gerosa
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Antonello Enrico Spinelli
- Experimental
Imaging Centre, San Raffaele Scientific
Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Natalia Fernández Delgado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Miriam Herrera Collado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Pasquina Marzola
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
19
|
Cardo L, Martínez-Parra L, Cesco M, Echeverría-Beistegui BM, Martínez-Moro M, Herrero-Álvarez N, Cabrerizo MB, Carregal-Romero S, Ramos-Cabrer P, Ruiz-Cabello J, Prato M. Luminescent Carbon Nanodots Doped with Gadolinium (III): Purification Criteria, Chemical and Biological Characterization of a New Dual Fluorescence/MR Imaging Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206442. [PMID: 36840669 DOI: 10.1002/smll.202206442] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Carbon Dots (CDs) are luminescent quasi-spherical nanoparticles, possessing water solubility, high biocompatibility, and tunable chemical and physical properties for a wide range of applications, including nanomedicine and theranostics. The evaluation of new purification criteria, useful to achieve more reliable CDs, free from the interference of artifacts, is currently an object of debate in the field. Here, new CDs doped with gadolinium (Gd (III)), named Gd@CNDs, are presented as multifunctional probes for Magnetic Resonance Imaging (MRI). This new system is a case of study, to evaluate and/or combine different purification strategies, as a crucial approach to generate CDs with a better performance. Indeed, these new amorphous Gd@CNDs display good homogeneity, and they are free from emissive side products. Gd@CNDs (7-10 nm) contain 7% of Gd (III) w/w, display suitable and stable longitudinal relaxivity (r1 ) and with emissive behavior, therefore potentially useful for both MR and fluorescence imaging. They show good biocompatibility in both cellular and in vivo studies, cell permeability, and the ability to generate contrast in cellular pellets. Finally, MRI recording T1 -weighted images on mice after intravenous injection of Gd@CNDs, show signal enhancement in the liver, spleen, and kidney 30 min postinjection.
Collapse
Affiliation(s)
- Lucia Cardo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- University of the Basque Country UPV-EHU, Donostia-San Sebastián, 20018, Spain
| | - Michele Cesco
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- University of the Basque Country UPV-EHU, Donostia-San Sebastián, 20018, Spain
| | - Begoña M Echeverría-Beistegui
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Marta Martínez-Moro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Natalia Herrero-Álvarez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Marta-Beraza Cabrerizo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, 28029, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, 28029, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, 34127, Italy
| |
Collapse
|
20
|
Jegadeesan P, Sen S, Padmaprabu C, Srivastava S, Das A, Amirthapandian S. Morphological and optical investigations on Gd2O3 nanostructures. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Chen Y, Lin Q, Cheng H, Huang H, Shao J, Ye Y, Liu GS, Chen L, Luo Y, Chen Z. Nanodiamond-Based Optical-Fiber Quantum Probe for Magnetic Field and Biological Sensing. ACS Sens 2022; 7:3660-3670. [PMID: 36454224 DOI: 10.1021/acssensors.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Owing to the unique electronic spin properties, nitrogen-vacancy (NV) centers hosted in diamond have emerged as a powerful quantum tool for detecting various physical parameters and biological species. In this work, an optical-fiber quantum probe, configured by chemically modifying nanodiamonds on the surface of a cone fiber tip, is developed. Based on the continuous-wave optically detected magnetic resonance method and lock-in amplification technique, it is found that the sensing performance of probes can be engineered by varying the nanodiamond dispersion concentration and modification duration during the chemical modification process. Combined with a pair of magnetic flux concentrators, the magnetic field detection sensitivity has reached 0.57 nT/Hz1/2@1 Hz, a new record among the fiber magnetometers based on nanodiamonds. Taking Gd3+ as the demo, the capability of probes in paramagnetic species detection is also demonstrated experimentally. Our work provides a new approach to develop NV centers as quantum probes featuring high integration, multifunction, high sensitivity, etc.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qianyu Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongda Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huanhuan Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Shao
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yingying Ye
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
22
|
Rejeeth C, Sharma A. Label-free designed nanomaterials enrichment and separation techniques for phosphoproteomics based on mass spectrometry. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1047055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The surface chemical characteristics of nanomaterials have a substantial impact on the affinity probe used to enrich proteins and peptides for MALDI-MS analysis of a real human sample. Detecting phosphoproteins involved in signalling is always difficult, even with recent developments in mass spectrometry, because protein phosphorylation is often temporary from complicated mixtures. This review summarizes current research on the successful enrichment of various intriguing glycoproteins and glycol peptides using surface affinity materials with distinctive qualities such as low cost, excellent structural stability, diversity, and multifunction. As a consequence, this review will provide a quick overview of the scholars from various backgrounds who are working in this intriguing interdisciplinary field. Label-free cancer biomarkers and other diseases will benefit from future challenges.
Collapse
|
23
|
Lee GH. Special Issue “Advanced Nanomaterials for Bioimaging”. NANOMATERIALS 2022; 12:nano12142496. [PMID: 35889719 PMCID: PMC9320963 DOI: 10.3390/nano12142496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea
| |
Collapse
|
24
|
Lv S, Sun J, Guo C, Qin Y, Zhang R. PAI/MRI Visualization of Tumor Derived Cellular Microvesicles with Endogenous Biopolymer Nanoparticles Modification. Int J Nanomedicine 2022; 17:2883-2890. [PMID: 35795080 PMCID: PMC9252299 DOI: 10.2147/ijn.s367721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor derived cellular microvesicles (TDMVs), as excellent drug delivery vehicles in vivo, play an important role in the treatment of cancers. However, it is difficult to obtain intuitional biodistribution behavior and internalization mechanisms of TDMVs in vivo. Thus, it is very urgent and important to establish a stable and reliable visualization technology to track the biological behavior and function of TDMVs. As an endogenous biopolymer, melanin possesses natural biocompatibility and biodegradability, and various biological imaging could be realized by modifying it. Therefore, melanin-based nanoparticles are excellent candidates for in vivo visualization of TDMVs. Methods In this work, the biodistribution and metabolic behavior of TDMVs were visualized by dual-modality imaging with PAI and MRI after incubation with gadolinium ion-chelated melanin nanoparticles. Results In this study, MRI and PAI dual-modality imaging of the in vivo distribution behavior of TDMVs was achieved with the help of MNP-Gd. The good targeting ability of TDMVs at the homologous tumor site was observed, and their distribution and metabolism behavior in the whole body were studied at the meantime. The results indicated that TDMVs preferentially accumulated in syngeneic tumor sites and liver regions after intravenous injection and were eventually metabolized by the kidneys over time. Conclusion This work proposed a novel dual-modal imaging strategy for the visualization of TDMVs, which is of great significance for further understanding the biological mechanisms of extracellular vesicles.
Collapse
Affiliation(s)
- Shuxin Lv
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Jinghua Sun
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Yufei Qin
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| |
Collapse
|
25
|
de Faria Castro Fleury E, Castro C, do Amaral MSC, Roveda Junior D. Management of Non-Mass Enhancement at Breast Magnetic Resonance in Screening Settings Referred for Magnetic Resonance-Guided Biopsy. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221095897. [PMID: 35602239 PMCID: PMC9118420 DOI: 10.1177/11782234221095897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Rationale and Objectives According to the Breast Imaging and Reporting Data System (BI-RADS), one of the main limitations of MRI is diagnosing the non-mass enhancement (NME). The NME lesion is challenging since it is unique to the MRI lexicon. This study aims to report our experience with NME lesions diagnosed by MRI referred for MRI-guided biopsies and discuss the management and follow-up of these lesions. Materials and Methods We retrospectively evaluated all MRI-guide breast biopsies. We included all patients referred for NME breast MRI-guided biopsy in screening settings. All patients had a negative second-look mammography or ultrasonography. We correlated the distribution and internal enhancement pattern (IEP) of the NME lesions with histology. Invasive ductal carcinomas (IDC) of no special type and ductal carcinoma in situ (DCIS) were considered malignant lesions. Results From January-2018 to July-2021, we included 96 women with a total of 96 lesions in the study. There were 90 benign and 6 malignant lesions with DCIS prevalence (5/6 cancers). The most frequent benign lesion type was fibrocystic changes. There were no NME lesions with diffuse or multiple area distribution features referred to MRI-guided biopsy. The positive-predictive values (PPV) were respectively 0.0%, 2.5%, 9.0%, and 11.0% for linear, focal, regional, and segmental distribution describers, and 0.0, 3.0%, 7.9%, and 50% for homogenous, heterogeneous, clumped, and clustered-ring enhancement patterns. Conclusion We observe the high potential risk for malignancy in the clustered-ring enhancement followed by the clumped pattern. Segmental distribution presented the highest predictive-positive values.
Collapse
Affiliation(s)
| | - Caio Castro
- Department of Radiology, Femme-Laboratório da Mulher, São Paulo, Brazil
| | | | | |
Collapse
|
26
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
27
|
A Modified PEG-Fe3O4 Magnetic Nanoparticles Conjugated with D( +)Glucosamine (DG): MRI Contrast Agent. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Meng Q, Wang Y, Li C, Hu X. Bismuth- and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03420d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized novel Bi,Gd-CQDs exhibit red and green fluorescence, enabling CT and MR imaging, and providing an approach for multifunctional biological imaging.
Collapse
Affiliation(s)
- Qin Meng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
| | - Yun Wang
- School of Mechanical Engineering, Guangdong Songshan Polytechnic, Shaoguan, Guangdong, 512126, People's Republic of China
| | - Chunxing Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
| | - Xiaoxi Hu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
- School of Mechanical Engineering, Guangdong Songshan Polytechnic, Shaoguan, Guangdong, 512126, People's Republic of China
| |
Collapse
|