1
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
2
|
Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, Saharudin MS, Abral H, Sapuan SM. Advanced functional materials based on nanocellulose/Mxene: A review. Int J Biol Macromol 2024; 278:135207. [PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - A Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang, Sumatera Barat, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang, Indonesia
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
An Q, Ren J, Jia X, Qu S, Zhang N, Li X, Fan G, Pan S, Zhang Z, Wu K. Anisotropic materials based on carbohydrate polymers: A review of fabrication strategies, properties, and applications. Carbohydr Polym 2024; 330:121801. [PMID: 38368095 DOI: 10.1016/j.carbpol.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Anisotropic structures exist in almost all living organisms to endow them with superior properties and physiological functionalities. However, conventional artificial materials possess unordered isotropic structures, resulting in limited functions and applications. The development of anisotropic structures on carbohydrates is reported to have an impact on their properties and applications. In this review, various alignment strategies for carbohydrates (i.e., cellulose, chitin and alginate) from bottom-up to top-down strategies are discussed, including the rapidly developed innovative technologies such as shear-induced orientation through extrusion-based 3D/4D printing, magnetic-assisted alignment, and electric-induced alignment. The unique properties and wide applications of anisotropic carbohydrate materials across different fields, from biomedical, biosensors, smart actuators, soft conductive materials, to thermal management are also summarized. Finally, recommendations on the selection of fabrication strategies are given. The major challenge lies in the construction of long-range hierarchical alignment with high orientation degree and precise control over complicated architectures. With the future development of hierarchical alignment strategies, alignment control techniques, and alignment mechanism elucidation, the potential of anisotropic carbohydrate materials for scalable manufacture and clinical applications will be fully realized.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Xiao Jia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Shasha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China.
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Zhifeng Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China; Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| | - Kangning Wu
- Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| |
Collapse
|
4
|
Casanova F, Pereira CF, Ribeiro AB, Castro PM, Freixo R, Martins E, Tavares-Valente D, Fernandes JC, Pintado ME, Ramos ÓL. Biological Potential and Bioaccessibility of Encapsulated Curcumin into Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals. Pharmaceuticals (Basel) 2023; 16:1737. [PMID: 38139863 PMCID: PMC10747507 DOI: 10.3390/ph16121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.
Collapse
Affiliation(s)
- Francisca Casanova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Pedro M Castro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eva Martins
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João C Fernandes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Zaini HM, Saallah S, Roslan J, Sulaiman NS, Munsu E, Wahab NA, Pindi W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023; 9:e18734. [PMID: 37554779 PMCID: PMC10404743 DOI: 10.1016/j.heliyon.2023.e18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Bananas are among the most produced and consumed fruit all over the world. However, a vast amount of banana biomass is generated because banana trees bear fruit only once in their lifetime. This massive amount of biomass waste is either disposed of in agricultural fields, combusted, or dumped at plantations, thus posing environmental concerns. Nanocellulose (NC) extraction from this source can be one approach to improve the value of banana biomass. Owing to its superb properties, such as high surface area and aspect ratio, good tensile strength, and high thermal stability, this has facilitated nanocellulose application in the food industry either as a functional ingredient, an additive or in food packaging. In this review, two different applications of banana biomass NC were identified: (i) food packaging and (ii) food stabilizers. Relevant publications were reviewed, focusing on the nanocellulose extraction from several banana biomass applications as food additives, as well as on the safety and regulatory aspects. Ultimately, further research is required to prompt a perspicuous conclusion about banana biomass NC safety, its potential hazards in food applications, as well as its validated standards for future commercialization.
Collapse
Affiliation(s)
- Hana Mohd Zaini
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jumardi Roslan
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Elisha Munsu
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Noorakmar A. Wahab
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Functional Foods Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
6
|
Design of Innovative Biocompatible Cellulose Nanostructures for the Delivery and Sustained Release of Curcumin. Pharmaceutics 2023; 15:pharmaceutics15030981. [PMID: 36986845 PMCID: PMC10051681 DOI: 10.3390/pharmaceutics15030981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems.
Collapse
|
7
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Ventura C, Marques C, Cadete J, Vilar M, Pedrosa JFS, Pinto F, Fernandes SN, da Rosa RR, Godinho MH, Ferreira PJT, Louro H, Silva MJ. Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. J Xenobiot 2022; 12:91-108. [PMID: 35645290 PMCID: PMC9149940 DOI: 10.3390/jox12020009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Catarina Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - João Cadete
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Madalena Vilar
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Jorge F. S. Pedrosa
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Fátima Pinto
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Susete Nogueira Fernandes
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Rafaela Raupp da Rosa
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Maria Helena Godinho
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Paulo J. T. Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| |
Collapse
|