1
|
Jain S, Bhatt J, Gupta S, Bhatia DD. Nanotechnology at the crossroads of stem cell medicine. Biomater Sci 2024; 13:161-178. [PMID: 39584588 DOI: 10.1039/d4bm01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.
Collapse
Affiliation(s)
- Sweny Jain
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Jay Bhatt
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Dhiraj Devidas Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Fu H, Xie X, Zhai L, Liu Y, Tang Y, He S, Li J, Xiao Q, Xu G, Yang Z, Zhang X, Liu Y. CX43-mediated mitochondrial transfer maintains stemness of KG-1a leukemia stem cells through metabolic remodeling. Stem Cell Res Ther 2024; 15:460. [PMID: 39623456 PMCID: PMC11613858 DOI: 10.1186/s13287-024-04079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by abundant immature myeloid cells, relapse and refractory due to leukemia stem cells (LSCs). Bone marrow mesenchymal stem/ stromal cells (BMSCs) supported LSCs survival, meanwhile, chemotherapy improved connexin43 (CX43) expression. CX43, as the most intercellular gap junction, facilitated transmit mitochondria from BMSCs into AML. We hypothesized that increased mitochondria transferred from BMSCs supported metabolic remodeling in LSCs to sustain their stemness. METHODS Primary BMSCs from AML patients were isolated. CX43-BMSCs, overexpressing CX43, were cocultured with KG-1a cells. Fluorescence and confocal microscopy observed mitochondrial transfer. Flow cytometry, EdU assay, and clonogenicity evaluated cell cycle, proliferation, and clonogenic potential. Xenograft mouse models were used to evaluate the tumorigenicity of KG-1a in vivo. Seahorse, RNA-seq, and LC-MS assessed mitochondrial function, transcriptomes, and metabolites post-coculture. RESULTS CX43-BMSCs promoted unidirectional mitochondrial transfer, enhancing KG-1a adhesion and proliferation to maintain LSCs stemness in vitro and vivo. RNA-seq revealed coculture with CX43-BMSCs upregulated genes related to adhesion, proliferation, and migration in KG-1a cells. Elevated CX43 expression strengthened BMSCs-KG-1a interaction, facilitating mitochondrial transfer and nucleoside metabolism, fueling KG-1a cells. This enhanced mitochondrial energy metabolism, promoting metabolic reprogramming and clonogenicity. CONCLUSION CX43-mediated mitochondrial transfer from BMSCs to KG-1a enhances LSCs adhesion, proliferation, clonogenicity, and metabolic reprogramming. CX43 emerges as a potential therapeutic target for AML by sustaining LSCs stemness through metabolic remodeling.
Collapse
Affiliation(s)
- Huihui Fu
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoqing Xie
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yifeng Tang
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Li
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Xiao
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Guofa Xu
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Department of Hematology, Chongqing, Central Laboratory, Chongqing University Fuling Hospital, Chongqing University Fuling Hospital, Chongqing, China
| | - Zailin Yang
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiaomei Zhang
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Department of Hematology Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
4
|
Ruszkowska-Ciastek B, Kwiatkowska K, Marques-da-Silva D, Lagoa R. Cancer Stem Cells from Definition to Detection and Targeted Drugs. Int J Mol Sci 2024; 25:3903. [PMID: 38612718 PMCID: PMC11011379 DOI: 10.3390/ijms25073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers remain the second leading cause of mortality in the world. Preclinical and clinical studies point an important role of cancer/leukaemia stem cells (CSCs/LSCs) in the colonisation at secondary organ sites upon metastatic spreading, although the precise mechanisms for specific actions are still not fully understood. Reviewing the present knowledge on the crucial role of CSCs/LSCs, their plasticity, and population heterogeneity in treatment failures in cancer patients is timely. Standard chemotherapy, which acts mainly on rapidly dividing cells, is unable to adequately affect CSCs with a low proliferation rate. One of the proposed mechanisms of CSC resistance to anticancer agents is the fact that these cells can easily shift between different phases of the cell cycle in response to typical cell stimuli induced by anticancer drugs. In this work, we reviewed the recent studies on CSC/LSC alterations associated with disease recurrence, and we systematised the functional assays, markers, and novel methods for CSCs screening. This review emphasises CSCs' involvement in cancer progression and metastasis, as well as CSC/LSC targeting by synthetic and natural compounds aiming at their elimination or modulation of stemness properties.
Collapse
Affiliation(s)
- Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Katarzyna Kwiatkowska
- Department of Laboratory Diagnostics, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Dorinda Marques-da-Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
5
|
Entezari M, Tayari A, Paskeh MDA, Kheirabad SK, Naeemi S, Taheriazam A, Dehghani H, Salimimoghadam S, Hashemi M, Mirzaei S, Samarghandian S. Curcumin in treatment of hematological cancers: Promises and challenges. J Tradit Complement Med 2024; 14:121-134. [PMID: 38481552 PMCID: PMC10927384 DOI: 10.1016/j.jtcme.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2024] Open
Abstract
Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Armita Tayari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Janani G, Girigoswami A, Girigoswami K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:415-441. [PMID: 38113194 DOI: 10.1080/09205063.2023.2294541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Leukemia is a cancer of blood cells that mainly affects the white blood cells. In acute myeloid leukemia (AML) sudden growth of cancerous cells occurs in blood and bone marrow, and it disrupts normal blood cell production. Most patients are asymptomatic, but it spreads rapidly and can become fatal if left untreated. AML is the prevalent form of leukemia in children. Risk factors of AML include chemical exposure, radiation, genetics, etc. Conventional diagnostic methods of AML are complete blood count tests and bone marrow aspiration, while conventional treatment methods involve chemotherapy, radiation therapy, and bone marrow transplant. There is a risk of cancer cells spreading progressively to the other organs if left untreated, and hence, early diagnosis is required. The conventional diagnostic methods are time- consuming and have drawbacks like harmful side effects and recurrence of the disease. To overcome these difficulties, nanoparticles are employed in treating and diagnosing AML. These nanoparticles can be surface- modified and can be used against cancer cells. Due to their enhanced permeability effect and high surface-to-volume ratio they will be able to reach the tumour site which cannot be reached by traditional drugs. This review article talks about how nanotechnology is more advantageous over the traditional methods in the treatment and diagnosis of AML.
Collapse
Affiliation(s)
- Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Mundekkad D, Cho WC. Applications of Curcumin and Its Nanoforms in the Treatment of Cancer. Pharmaceutics 2023; 15:2223. [PMID: 37765192 PMCID: PMC10536212 DOI: 10.3390/pharmaceutics15092223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the diverse medicinal and pharmacokinetic properties of turmeric, it is well-known in the therapeutic, pharmaceutic, nutraceutical, cosmetic, and dietary industries. It gained importance due to its multitude of properties, such as wound-healing, anti-inflammatory, anti-oxidant, anti-microbial, cytoprotective, anti-aging, anti-cancer, and immunomodulatory effects. Even though the natural healing effect of turmeric has been known to Indians as early as 2500 BCE, the global demand for turmeric has increased only recently. A major reason for the beneficiary activities of turmeric is the presence of the yellow-colored polyphenolic compound called curcumin. Many studies have been carried out on the various properties of curcumin and its derivatives. Despite its low bioavailability, curcumin has been effectively used for the treatment of many diseases, such as cardiovascular and neurological diseases, diabetes, arthritis, and cancer. The advent of nanobiotechnology has further opened wide opportunities to explore and expand the use of curcumin in the medical field. Nanoformulations using curcumin and its derivatives helped to design new treatment modalities, specifically in cancer, because of the better bioavailability and solubility of nanocurcumin when compared to natural curcumin. This review deals with the various applications of curcumin nanoparticles in cancer therapy and broadly tries to understand how it affect the immunological status of the cancer cell.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Department of Biotechnology, Nehru Arts and Science College, Thirumalayampalayam, Coimbatore 641105, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
8
|
Wang L. Editorial for Special Issue "Cancer Treatment via Nanotherapy". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1153. [PMID: 37049247 PMCID: PMC10096838 DOI: 10.3390/nano13071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Effective cancer treatment remains one of the greatest medical challenges [...].
Collapse
Affiliation(s)
- Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; ; Tel.: +1-613-562-5624
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
9
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
10
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
11
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
12
|
Li S, Wang Z, Guo X, Chen P, Tang Y. Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias. Bioengineered 2022; 13:8631-8642. [PMID: 35322728 PMCID: PMC9161826 DOI: 10.1080/21655979.2022.2054159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
CD45RA is a specific marker for leukemia stem cell (LSC) sub-populations in acute myeloid leukemia (AML). Ranpirnase (Rap), an amphibian RNase, has been extensively investigated in preclinical and clinical studies for its antitumor activity. Rap could be administered repeatedly to patients without inducing an immune response. Reversible renal toxicity has been reported to be dose-limiting. In this study, we generated a novel immunotoxin targeting LSCs: Hm3A4-Rap, which was composed of Rap and Hm3A4, a human-mouse chimeric antibody against CD45RA. This immunotoxin was generated recombinantly by fusing Rap to Hm3A4 at the Fc terminus and then produced by stably transfecting CHO cells. The immunotoxin was purified using Ni-NTA and then evaluated using RT-PCR, SDS-PAGE, antibody titer assays, competitive inhibition assays, and internalization assays. In addition, the purity, molecular integrity, and affinity to the CD45RA antigen were determined. In vitro studies demonstrated that Hm3A4-Rap could efficiently kill target cells. In vivo studies demonstrated that Hm3A4-Rap had potent anti-leukemia activity, with dosed mice showing a significant increase in survival time compared to control mice (P < 0.01). In summary, our immunotoxin had excellent biological activity suggesting its potential therapeutic value for treating AML patients. Additional preclinical and clinical studies are needed to develop this immunotoxin as a treatment option for patients with leukemia.
Collapse
Affiliation(s)
- Sisi Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, PR China
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR, China
| | - Xiaoping Guo
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Ping Chen
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| |
Collapse
|