1
|
Kalenichenko D, Kriukova I, Karaulov A, Nabiev I, Sukhanova A. Cytotoxic Effects of Doxorubicin on Cancer Cells and Macrophages Depend Differently on the Microcarrier Structure. Pharmaceutics 2024; 16:785. [PMID: 38931906 PMCID: PMC11207472 DOI: 10.3390/pharmaceutics16060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro. DOX-containing calcium carbonate microparticles with or without a protective polyelectrolyte shell and polyelectrolyte microcapsules of about 2.4-2.5 μm in size were obtained through coprecipitation and spontaneous loading. All the microstructures exhibited a prolonged release of DOX. An estimation of the cytotoxicity of the DOX-containing microstructures showed that the encapsulation of DOX decreased its toxicity to macrophages and delayed the cytotoxic effect against tumor cells. The DOX-containing calcium carbonate microparticles with a protective polyelectrolyte shell were more toxic to the cancer cells than DOX-containing polyelectrolyte microcapsules, whereas, for the macrophages, the microcapsules were most toxic. It is concluded that DOX-containing core/shell microparticles with an eight-layer polyelectrolyte shell are optimal drug microcarriers due to their low toxicity to immune cells, even upon prolonged incubation, and strong delayed cytotoxicity against tumor cells.
Collapse
Affiliation(s)
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| |
Collapse
|
2
|
Kim AL, Musin EV, Chebykin YS, Tikhonenko SA. Characterization of Polyallylamine/Polystyrene Sulfonate Polyelectrolyte Microcapsules Formed on Solid Cores: Morphology. Polymers (Basel) 2024; 16:1521. [PMID: 38891467 PMCID: PMC11174721 DOI: 10.3390/polym16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Polyelectrolyte microcapsules (PMC) based on polyallylamine and polystyrene sulfonate are utilized in various fields of human activity, including medicine, textiles, and the food industry, among others. However, characteristics such as microcapsule size, shell thickness, and pore size are not sufficiently studied and systematized, even though they determine the possibility of using microcapsules in applied tasks. The aim of this review is to identify general patterns and gaps in the study of the morphology of polyelectrolyte microcapsules obtained by the alternate adsorption of polystyrene sulfonate and polyallylamine on different solid cores. First and foremost, it was found that the morphological change in polyelectrolyte microcapsules formed on different cores exhibits a significant difference in response to varying stimuli. Factors such as ionic strength, the acidity of the medium, and temperature have different effects on the size of the microcapsules, the thickness of their shells, and the number and size of their pores. At present, the morphology of the microcapsules formed on the melamine formaldehyde core has been most studied, while the morphology of microcapsules formed on other types of cores is scarcely studied. In addition, modern methods of nanoscale system analysis will allow for an objective assessment of PMC characteristics and provide a fresh perspective on the subject of research.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Tikhonenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia; (A.L.K.); (E.V.M.); (Y.S.C.)
| |
Collapse
|
3
|
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024; 16:653. [PMID: 38794315 PMCID: PMC11124899 DOI: 10.3390/pharmaceutics16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.
Collapse
Affiliation(s)
- Lara Biny
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
4
|
Desmond L, Margini S, Barchiesi E, Pontrelli G, Phan AN, Gentile P. Layer-by-layer assembly of nanotheranostic particles for simultaneous delivery of docetaxel and doxorubicin to target osteosarcoma. APL Bioeng 2024; 8:016113. [PMID: 38445236 PMCID: PMC10913103 DOI: 10.1063/5.0180831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Osteosarcoma (OS) is a rare form of primary bone cancer, impacting approximately 3.4 × 106 individuals worldwide each year, primarily afflicting children. Given the limitations of existing cancer therapies, the emergence of nanotheranostic platforms has generated considerable research interest in recent decades. These platforms seamlessly integrate therapeutic potential of drug compounds with the diagnostic capabilities of imaging probes within a single construct. This innovation has opened avenues for enhanced drug delivery to targeted sites while concurrently enabling real-time monitoring of the vehicle's trajectory. In this study, we developed a nanotheranostic system employing the layer-by-layer (LbL) technique on a core containing doxorubicin (DOXO) and in-house synthesized carbon quantum dots. By utilizing chitosan and chondroitin sulfate as polyelectrolytes, we constructed a multilayered coating to encapsulate DOXO and docetaxel, achieving a coordinated co-delivery of both drugs. The LbL-functionalized nanoparticles exhibited an approximate size of 150 nm, manifesting a predominantly uniform and spherical morphology, with an encapsulation efficiency of 48% for both drugs. The presence of seven layers in these systems facilitated controlled drug release over time, as evidenced by in vitro release tests. Finally, the impact of the LbL-functionalized nanoparticles was evaluated on U2OS and Saos-2 osteosarcoma cells. The synergistic effect of the two drugs was found to be crucial in inducing cell death, particularly in Saos-2 cells treated with nanoparticles at concentrations higher than 10 μg/ml. Transmission electron microscopy analysis confirmed the internalization of the nanoparticles into both cell types through endocytic mechanisms, revealing an underlying mechanism of necrosis-induced cell death.
Collapse
Affiliation(s)
- Liam Desmond
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simone Margini
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emilio Barchiesi
- Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Italy
| | | | - Anh N. Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
6
|
Guzmán E, Ortega F, Rubio RG. Layer-by-Layer Nanoassemblies for Vaccination Purposes. Pharmaceutics 2023; 15:pharmaceutics15051449. [PMID: 37242691 DOI: 10.3390/pharmaceutics15051449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the availability of effective vaccines has become a public health challenge due to the proliferation of different pandemic outbreaks which are a risk for the world population health. Therefore, the manufacturing of new formulations providing a robust immune response against specific diseases is of paramount importance. This can be partially faced by introducing vaccination systems based on nanostructured materials, and in particular, nanoassemblies obtained by the Layer-by-Layer (LbL) method. This has emerged, in recent years, as a very promising alternative for the design and optimization of effective vaccination platforms. In particular, the versatility and modularity of the LbL method provide very powerful tools for fabricating functional materials, opening new avenues on the design of different biomedical tools, including very specific vaccination platforms. Moreover, the possibility to control the shape, size, and chemical composition of the supramolecular nanoassemblies obtained by the LbL method offers new opportunities for manufacturing materials which can be administered following specific routes and present very specific targeting. Thus, it will be possible to increase the patient convenience and the efficacy of the vaccination programs. This review presents a general overview on the state of the art of the fabrication of vaccination platforms based on LbL materials, trying to highlight some important advantages offered by these systems.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XIII, 28040 Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XIII, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
7
|
Navolokin N, Lomova M, Bucharskaya A, Godage O, Polukonova N, Shirokov A, Grinev V, Maslyakova G. Antitumor Effects of Microencapsulated Gratiola officinalis Extract on Breast Carcinoma and Human Cervical Cancer Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1470. [PMID: 36837099 PMCID: PMC9960207 DOI: 10.3390/ma16041470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Flavonoid-containing Gratiola officinalis extract has been studied in relation to breast carcinoma and human cervical cancer cells in encapsulated and native form. Encapsulation was realized in polymer shells, which were formed by the layer-by-layer method using sequential adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the destructible cores. The extract was prepared by the author's method and characterized using high performance liquid chromatography. By means of optical and fluorescent microscopy, cell changes under the action of pure and encapsulated extracts were comprehensively studied, and statistical analysis was carried out. Cells were stained with propidium iodide, acridine orange, and Hoechst 33258. A fluorescence microscope with a digital video camera were used for cell imaging. The encapsulated extract caused 100% death of breast cancer SKBR-3 cells and 34% death of cervical cancer HeLa cells and prevented the formation of autophagosomes in both cultures. Analysis of the viability and morphological features of tumor cells under the action of microencapsulated extract allows us to consider microencapsulation as an effective strategy for delivering Gratiola officinalis extract to tumor cells and a promising way to overcome the protective autophagy.
Collapse
Affiliation(s)
- Nikita Navolokin
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Maria Lomova
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Alla Bucharskaya
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, Tomsk 634050, Russia
| | - Olga Godage
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Natalya Polukonova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Alexander Shirokov
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Vyacheslav Grinev
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Galina Maslyakova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| |
Collapse
|
8
|
Liu J, Zhang L, Zeng W, Zhang L, He N, Lu Z. High-throughput quantitative detection of triple-negative breast cancer-associated expressed miRNAs by rolling circle amplification on fluorescence-encoded microspheres. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Kotoulas KT, Campbell J, Skirtach AG, Volodkin D, Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers. Pharmaceutics 2022; 14:2483. [PMID: 36432674 PMCID: PMC9697854 DOI: 10.3390/pharmaceutics14112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
Collapse
Affiliation(s)
- Konstantinos T. Kotoulas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andre G. Skirtach
- Bio-Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| |
Collapse
|
10
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
11
|
Mateos-Maroto A, Fernández-Peña L, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers (Basel) 2022; 14:polym14030479. [PMID: 35160468 PMCID: PMC8838751 DOI: 10.3390/polym14030479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|