1
|
Seredin P, Goloshchapov D, Emelyanova A, Eremeev K, Peshkov Y, Shikhaliev K, Potapov A, Ippolitov Y, Kashkarov V, Nesterov D, Shapiro K, Freitas RO, Mahdy IA. Rapid Deposition of the Biomimetic Hydroxyapatite-Polydopamine-Amino Acid Composite Layers onto the Natural Enamel. ACS OMEGA 2024; 9:17012-17027. [PMID: 38645322 PMCID: PMC11024970 DOI: 10.1021/acsomega.3c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
In this work, we developed a technology that enables rapid deposition of biomimetic composite films onto natural enamel slices (known as biotemplates). These films are composed of polydopamine (PDA) and nanocrystalline carbonate-substituted hydroxyapatite (nano-cHAp) that have been functionalized with amino acid l-Arginine. We utilized atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM) combined with infrared (IR) synchrotron to achieve nanoscale spatial resolution for both IR absorption and topography analyses. This combined analytical modality allowed us to understand how morphology connects to local changes in the chemical environment on the biotemplate surface during the deposition of the bioinspired coating. Our findings revealed that when using the proposed technology and after the deposition of the first PDA layer, the film formed on the enamel surface nearly covers the entire surface of the specimen whose thickness is larger on the surface of the emerging enamel prisms. Calculation of the crystallinity index for the biomimetic layer showed a multiple increase compared with natural enamel. This indicates regular and dense aggregation of nano-cHAp into larger crystals, imitating the morphology of natural enamel rods. The microhardness of the formed PDA-based biomimetic layer mineralized with nano-cHAp functionalized with amino acid l-Arginine deposited on natural enamel was practically the same as that of natural enamel. The characterization of nano-cHAp-amino acid-PDA layers using IR and Raman microspectroscopy showed that l-arginine acts as a conjunction agent in the formation of mineralized biomimetic composite coatings. The uniformity of the mechanisms of PDA layer formation under different deposition conditions and substrate types allows for the formation of coatings regardless of the macro- and micromorphology of the template. Therefore, the results obtained in this work have a high potential for future clinical applications in dental practice.
Collapse
Affiliation(s)
- Pavel Seredin
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Anna Emelyanova
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Yaroslav Peshkov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Andrey Potapov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Yury Ippolitov
- Department
of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, Voronezh 394006, Russia
| | | | - Dmitry Nesterov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Kirill Shapiro
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Raul O. Freitas
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian
Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| | - Iman. A. Mahdy
- Physics
Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754 Cairo, Egypt
| |
Collapse
|
2
|
Seredin P, Goloshchapov D, Buylov N, Kashkarov V, Shikhaliev K, Potapov A, Ippolitov Y, Kartsev V, Kuyumchyan S, de Oliveira Freitas R. A Study of the Peculiarities of the Formation of a Hybrid Interface Based on Polydopamine between Dental Tissues and Dental Composites, Using IR and Raman Microspectroscopy, at the Submicron Level. Int J Mol Sci 2023; 24:11636. [PMID: 37511394 PMCID: PMC10380397 DOI: 10.3390/ijms241411636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The creation of buffer (hybrid) layers that provide improved adhesion to two heterogeneous materials is a promising and high-priority research area in the field of dental materials science. In our work, using FTIR and Raman microspectroscopy at the submicron level in a system of dental composites/intact dental enamel, we assessed the molecular features of formation and chemically visualized the hybrid interface formed on the basis of a nature-like adhesive, polydopamine (PDA). It is shown that a homogeneous bioinspired PDA-hybrid interface with an increased content of O-Ca-O bonds can be created using traditional methods of dental tissue pretreatment (diamond micro drilling, acid etching), as well as the subsequent alkalinization procedure and the developed synthesis technology. The development of the proposed technology for accelerated deposition of PDA-hybrid layers, as well as the creation of self-assembled biomimetic nanocomposites with antibacterial properties, may in the future find clinical application for minimally invasive dental restoration procedures.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Khidmet Shikhaliev
- Laboratory of Organic Additives for the Processes of Chemical and Electrochemical Deposition of Metals and Alloys Used in the Electronics Industry, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Andrey Potapov
- Laboratory of Organic Additives for the Processes of Chemical and Electrochemical Deposition of Metals and Alloys Used in the Electronics Industry, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya St. 11, 394006 Voronezh, Russia
| | | | - Sergey Kuyumchyan
- Saint Petersburg State University Hospital, 154, Fontanka River Embankment, 198103 St. Petersburg, Russia
| | - Raul de Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| |
Collapse
|
3
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
4
|
Seredin P, Goloshchapov D, Buylov N, Kashkarov V, Emelyanova A, Eremeev K, Ippolitov Y. Compositional Analysis of the Dental Biomimetic Hybrid Nanomaterials Based on Bioinspired Nonstoichiometric Hydroxyapatite with Small Deviations in the Carbonate Incorporation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4453. [PMID: 36558306 PMCID: PMC9783965 DOI: 10.3390/nano12244453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In our paper, we discuss the results of a comprehensive structural-spectroscopic and microscopic analysis of non-stoichiometric nanocrystalline hydroxyapatite (CHAp) with low carbonate anion content and biomimetic hybrid nanomaterials produced on its basis. It was shown that hydroxyapatite nanocrystals synthesized by chemical precipitation and biogenic calcium source mimic the properties of biogenic apatite and also have a morphological organization of "core-shell" type. The "core" of the CHAp nanocrystal is characterized by an overabundance of calcium Ca/P~1.9. Thus "a shell" with thickness of ~3-5 nm is formed from intermediate apatite-like phases where the most probable are octocalcium phosphate, dicalcium phosphate dihydrate and tricalcium phosphate. The multimode model of the Raman profile of samples CHAp and biomimetic composites for spectral region 900-1100 cm-1 proposed in our work has allowed to allocate precise contribution of B-type carbonate substitution, taking into account the presence on a surface of "core" HAp nanocrystal of various third-party intermediate apatite-like phases. The calibration function constructed on the basis of the described model makes it possible to reliably determine small concentrations of carbonate in the structure of hydroxyapatite with the application of Raman express method of diagnostics. The results of our work can inspire researchers to study the processes of induced biomineralization in mineralized tissues of the human body, using non-destructive methods of control with simultaneous analysis of chemical bonding, as well as determining the role of impurity atoms in the functions exhibited by biotissue.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Lenin Ave 51, 620002 Yekaterinburg, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Konstantin Eremeev
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya Ul. 11, 394006 Voronezh, Russia
| |
Collapse
|
5
|
Seredin P, Goloshchapov D, Kashkarov V, Khydyakov Y, Nesterov D, Ippolitov I, Ippolitov Y, Vongsvivut J. Development of a Hybrid Biomimetic Enamel-Biocomposite Interface and a Study of Its Molecular Features Using Synchrotron Submicron ATR-FTIR Microspectroscopy and Multivariate Analysis Techniques. Int J Mol Sci 2022; 23:11699. [PMID: 36233001 PMCID: PMC9569639 DOI: 10.3390/ijms231911699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy. The results obtained indicate the possibility of forming a bonding that mimics the properties of natural tissue with controlled molecular properties in the hybrid layer. The diffusion of the amino acid booster conditioner component, the calcium alkali, and the modified adhesive with nanocrystalline carbonate-substituted hydroxyapatite in the hybrid interface region creates a structure that should stabilize the reconstituted crystalline enamel layer. The developed technology can form the basis for an individualized, personalized approach to dental enamel restorations.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Yury Khydyakov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Nesterov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty Ltd.), 800 Blackburn Rd, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Biomimetic Mineralization of Tooth Enamel Using Nanocrystalline Hydroxyapatite under Various Dental Surface Pretreatment Conditions. Biomimetics (Basel) 2022; 7:biomimetics7030111. [PMID: 35997431 PMCID: PMC9397024 DOI: 10.3390/biomimetics7030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this report, we demonstrated the formation of a biomimetic mineralizing layer obtained on the surface of dental enamel (biotemplate) using bioinspired nanocrystalline carbonate-substituted calcium hydroxyapatite (ncHAp), whose physical and chemical properties are closest to the natural apatite dental matrix, together with a complex of polyfunctional organic and polar amino acids. Using a set of structural, spectroscopy, and advanced microscopy techniques, we confirmed the formation of a nanosized ncHAp-based mineralized layer, as well as studying its chemical, substructural, and morphological features by means of various methods for the pretreatment of dental enamel. The pretreatment of a biotemplate in an alkaline solution of Ca(OH)2 and an amino acid booster, together with the executed subsequent mineralization with ncHAp, led to the formation of a mineralized layer with homogeneous micromorphology and the preferential orientation of the ncHAp nanocrystals. It was shown that the homogeneous crystallization of hydroxyapatite on the biotemplate surface and binding of individual nanocrystals and agglomerates into a single complex by an amino acid booster resulted in an increase (~15%) in the nanohardness value in the enamel rods area, compared to that of healthy natural enamel. Obtaining a similar hierarchy and cleavage characteristics as natural enamel in the mineralized layer, taking into account the micromorphological features of dental tissue, is an urgent problem for future research.
Collapse
|
7
|
Seredin P, Goloshchapov D, Kashkarov V, Emelyanova A, Buylov N, Ippolitov Y, Prutskij T. Development of a Visualisation Approach for Analysing Incipient and Clinically Unrecorded Enamel Fissure Caries Using Laser-Induced Contrast Imaging, MicroRaman Spectroscopy and Biomimetic Composites: A Pilot Study. J Imaging 2022; 8:jimaging8050137. [PMID: 35621901 PMCID: PMC9142888 DOI: 10.3390/jimaging8050137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
This pilot study presents a practical approach to detecting and visualising the initial forms of caries that are not clinically registered. The use of a laser-induced contrast visualisation (LICV) technique was shown to provide detection of the originating caries based on the separation of emissions from sound tissue, areas with destroyed tissue and regions of bacterial invasion. Adding microRaman spectroscopy to the measuring system enables reliable detection of the transformation of the organic–mineral component in the dental tissue and the spread of bacterial microflora in the affected region. Further laboratory and clinical studies of the comprehensive use of LICV and microRaman spectroscopy enable data extension on the application of this approach for accurate determination of the boundaries in the changed dental tissue as a result of initial caries. The obtained data has the potential to develop an effective preventive medical diagnostic approach and as a result, further personalised medical treatment can be specified.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Mir Av., 620002 Yekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya St. 11, 394006 Voronezh, Russia;
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| |
Collapse
|
8
|
The Molecular and Mechanical Characteristics of Biomimetic Composite Dental Materials Composed of Nanocrystalline Hydroxyapatite and Light-Cured Adhesive. Biomimetics (Basel) 2022; 7:biomimetics7020035. [PMID: 35466252 PMCID: PMC9036251 DOI: 10.3390/biomimetics7020035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
The application of biomimetic strategies and nanotechnologies (nanodentology) has led to numerous innovations and provided a considerable impetus by creating a new class of modern adhesion restoration materials, including different nanofillers. An analysis of the molecular properties of biomimetic adhesives was performed in this work to find the optimal composition that provides high polymerisation and mechanical hardness. Nanocrystalline carbonate-substituted calcium hydroxyapatite (nano-cHAp) was used as the filler of the light-cured adhesive Bis-GMA (bisphenol A-glycidyl methacrylate). The characteristics of this substance correspond to the apatite of human enamel and dentin, as well as to the biogenic source of calcium: avian eggshells. The introduction and distribution of nano-cHAp fillers in the adhesive matrix resulted in changes in chemical bonding, which were observed using Fourier transform infrared (FTIR) spectroscopy. As a result of the chemical bonding, the Vickers hardness (VH) and the degree of conversion under photopolymerisation of the nano-cHAp/Bis-GMA adhesive increased for the specified concentration of nanofiller. This result could contribute to the application of the developed biomimetic adhesives and the clinical success of restorations.
Collapse
|
9
|
Goloshchapov D, Kashkarov V, Nikitkov K, Seredin P. Investigation of the Effect of Nanocrystalline Calcium Carbonate-Substituted Hydroxyapatite and L-Lysine and L-Arginine Surface Interactions on the Molecular Properties of Dental Biomimetic Composites. Biomimetics (Basel) 2021; 6:70. [PMID: 34940013 PMCID: PMC8698581 DOI: 10.3390/biomimetics6040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
Differences in the surface interactions of non-stoichiometric nanocrystalline B-type carbonate-substituted hydroxyapatite (n-cHAp) with the amino acids L-Lysine hydrochloride (L-LysHCl) and L-Arginine hydrochloride (L-ArgHCl) in acidic and alkaline media were determined using structural and spectroscopic analysis methods. The obtained data confirm that hydroxyapatite synthesized using our technique, which was used to develop the n-cHAp/L-LysHCl and n-cHAp/L-ArgHCl composites, is nanocrystalline. Studies of molecular composition of the samples by Fourier transform infrared spectroscopy under the change in the charge state of L-Lysine in environments with different alkalinity are consistent with the results of X-ray diffraction analysis, as evidenced by the redistribution of the modes' intensities in the spectra that is correlated with the side chains, i.e., amide and carboxyl groups, of the amino acid. During the formation of a biomimetic composite containing L-Lysine hydrochloride and n-cHAp, the interaction occurred through bonding of the L-Lysine side chain and the hydroxyl groups of hydroxyapatite, which created an anionic form of L-Lysine at pH ≤ 5. In contrast, in biocomposites based on L-Arginine and n-cHAp, the interaction only slightly depends on pH value, and it proceeds by molecular orientation mechanisms. The X-ray diffraction and infrared spectroscopy results confirm that changes in the molecular composition of n-cHAp/L-ArgHCl biomimetic composites are caused by the electrostatic interaction between the L-ArgHCl molecule and the carbonate-substituted calcium hydroxyapatite. In this case, the bond formation was detected by Fourier transform infrared (FTIR) spectroscopy; the vibrational modes attributed to the main carbon chain and the guanidine group of L-Arginine are shifted during the interaction. The discovered interaction mechanisms between nanocrystalline carbonate-substituted hydroxyapatite that has physicochemical properties characteristic of the apatite in human dental enamel and specific amino acids are important for selecting the formation conditions of biomimetic composites and their integration with the natural dental tissue.
Collapse
Affiliation(s)
- Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia; (D.G.); (V.K.); (K.N.)
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia; (D.G.); (V.K.); (K.N.)
| | - Kirill Nikitkov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia; (D.G.); (V.K.); (K.N.)
| | - Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia; (D.G.); (V.K.); (K.N.)
- Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal, Mir Av., 620002 Yekaterinburg, Russia
| |
Collapse
|