1
|
Silbernagl D, Szymoniak P, Tavasolyzadeh Z, Sturm H, Topolniak I. Multiphoton Lithography of Interpenetrating Polymer Networks for Tailored Microstructure Thermal and Micromechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310580. [PMID: 38751207 DOI: 10.1002/smll.202310580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/09/2024] [Indexed: 10/01/2024]
Abstract
Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young's moduli of 3-4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering.
Collapse
Affiliation(s)
- Dorothee Silbernagl
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Paulina Szymoniak
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Zeynab Tavasolyzadeh
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Heinz Sturm
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Ievgeniia Topolniak
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
2
|
Koch T, Zhang W, Tran TT, Wang Y, Mikitisin A, Puchhammer J, Greer JR, Ovsianikov A, Chalupa-Gantner F, Lunzer M. Approaching Standardization: Mechanical Material Testing of Macroscopic Two-Photon Polymerized Specimens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308497. [PMID: 38303404 DOI: 10.1002/adma.202308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Two-photon polymerization (2PP) is becoming increasingly established as additive manufacturing technology for microfabrication due to its high-resolution and the feasibility of generating complex parts. Until now, the high resolution of 2PP is also its bottleneck, as it limited throughput and therefore restricted the application to the production of microparts. Thus, mechanical properties of 2PP materials can only be characterized using nonstandardized specialized microtesting methods. Due to recent advances in 2PP technology, it is now possible to produce parts in the size of several millimeters to even centimeters, finally permitting the fabrication of macrosized testing specimens. Besides suitable hardware systems, 2PP materials exhibiting favorable mechanical properties that allow printing of up-scaled parts are strongly demanded. In this work, the up-scalability of three different photopolymers is investigated using a high-throughput 2PP system and low numerical aperture optics. Testing specimens in the cm-range are produced and tested with common or even standardized material testing methods available in conventionally equipped polymer testing labs. Examples of the characterization of mechanical, thermo-mechanical, and fracture properties of 2PP processed materials are shown. Additionally, aspects such as postprocessing and aging are investigated. This lays a foundation for future expansion of the 2PP technology to broader industrial application.
Collapse
Affiliation(s)
- Thomas Koch
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Wenxin Zhang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Thomas T Tran
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yingjin Wang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Adrian Mikitisin
- Central Facility for Electron Microscopy, RWTH Aachen, 52074, Aachen, Germany
| | - Jakob Puchhammer
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Julia R Greer
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | |
Collapse
|
3
|
Fornacon-Wood C, Stühler MR, Millanvois A, Steiner L, Weimann C, Silbernagl D, Sturm H, Paulus B, Plajer AJ. Fluoride recovery in degradable fluorinated polyesters. Chem Commun (Camb) 2024; 60:7479-7482. [PMID: 38939919 DOI: 10.1039/d4cc02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Merlin R Stühler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Alexandre Millanvois
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Luca Steiner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Christiane Weimann
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Dorothee Silbernagl
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Alex J Plajer
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
4
|
Astrauskytė D, Galvanauskas K, Gailevičius D, Drazdys M, Malinauskas M, Grineviciute L. Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2281. [PMID: 37630866 PMCID: PMC10458567 DOI: 10.3390/nano13162281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming an anti-reflective coating on hybrid polymer micro-lenses fabricated by employing LDW without changing their geometry. Such coating deposited via atomic layer deposition (ALD) decreased the reflection from 3.3% to 0.1% at a wavelength of 633 nm for one surface of hybrid organic-inorganic SZ2080™ material. This research validates the compatibility of ALD with LDW 3D multiphoton lithography synergistically, expanding its applications on optical grade sub-100 μm scale micro-optics.
Collapse
Affiliation(s)
- Darija Astrauskytė
- Center for Physical Sciences and Technology, Savanorių av. 231, LT-02300 Vilnius, Lithuania
| | - Karolis Galvanauskas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio av. 10, LT-10223 Vilnius, Lithuania
| | - Darius Gailevičius
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio av. 10, LT-10223 Vilnius, Lithuania
| | - Mantas Drazdys
- Center for Physical Sciences and Technology, Savanorių av. 231, LT-02300 Vilnius, Lithuania
| | - Mangirdas Malinauskas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio av. 10, LT-10223 Vilnius, Lithuania
| | - Lina Grineviciute
- Center for Physical Sciences and Technology, Savanorių av. 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
5
|
Lecina-Tejero Ó, Pérez MÁ, García-Gareta E, Borau C. The rise of mechanical metamaterials: Auxetic constructs for skin wound healing. J Tissue Eng 2023; 14:20417314231177838. [PMID: 37362902 PMCID: PMC10285607 DOI: 10.1177/20417314231177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Auxetic materials are known for their unique ability to expand/contract in multiple directions when stretched/compressed. In other words, they exhibit a negative Poisson's ratio, which is usually positive for most of materials. This behavior appears in some biological tissues such as human skin, where it promotes wound healing by providing an enhanced mechanical support and facilitating cell migration. Skin tissue engineering has been a growing research topic in recent years, largely thanks to the rapid development of 3D printing techniques and technologies. The combination of computational studies with rapid manufacturing and tailored designs presents a huge potential for the future of personalized medicine. Overall, this review article provides a comprehensive overview of the current state of research on auxetic constructs for skin healing applications, highlighting the potential of auxetics as a promising treatment option for skin wounds. The article also identifies gaps in the current knowledge and suggests areas for future research. In particular, we discuss the designs, materials, manufacturing techniques, and also the computational and experimental studies on this topic.
Collapse
Affiliation(s)
- Óscar Lecina-Tejero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| |
Collapse
|