1
|
Bhunia S, Mukherjee M, Purkayastha P. Fluorescent metal nanoclusters: prospects for photoinduced electron transfer and energy harvesting. Chem Commun (Camb) 2024; 60:3370-3378. [PMID: 38444358 DOI: 10.1039/d4cc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Research on noble metal nanoclusters (MNCs) (elements with filled electron d-bands) is progressing forward because of the extensive and extraordinary chemical, optical, and physical properties of these materials. Because of the ultrasmall size of the MNCs (typically within 1-3 nm), they can be applied in areas of nearly all possible scientific domains. The greatest advantage of MNCs is the tunability that can be imposed, not only on their structures, but also on their chemical, physical, and biological properties. Nowadays, MNCs are very effectively used as energy donors and acceptors under suitable conditions and hence act as energy harvesters in solar cells, semiconductors, and biomarkers. In addition, ultrafast photoinduced electron transfer (PET) can be practised using MNCs under various circumstances. Herein, we have focused on the energy harvesting phenomena of Au-, Ag-, and Cu-based MNCs and elaborated on different ways to apply them.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Manish Mukherjee
- Department of Chemistry & Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
2
|
Meng Z, Sun S, Pu X, Wang J, Liao X, Huang Z, Deng Y, Yin G. Ratiometric fluorescence detection of dopamine based on copper nanoclusters and carbon dots. NANOTECHNOLOGY 2024; 35:235502. [PMID: 38417161 DOI: 10.1088/1361-6528/ad2e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Collapse
Affiliation(s)
- Zhihan Meng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Juang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yi Deng
- College of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Caschera D, Brugnoli B, Primitivo L, De Angelis M, Righi G, Pilloni L, Campi G, Imperatori P, Pentimalli M, Masi A, Liscio A, Rea G, Suber L. Synthesis of Photoluminescent 2D Self-Assembled Silver Thiolate Nanoclusters for Sensors and Biomolecule Support. Inorg Chem 2024; 63:3724-3734. [PMID: 38359353 DOI: 10.1021/acs.inorgchem.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Silver thiolate nanoclusters (Ag NCs) show distinctive optical properties resulting from their hybrid nature, metallic and molecular, exhibiting size-, structure-, and surface-dependent photoluminescence, thus enabling the exploitation of Ag NCs for potential applications in nanobiotechnology, catalysis, and biomedicine. However, tailoring Ag NCs for specific applications requires achieving long-term stability and may involve modifying surface chemistry, fine-tuning ligand composition, or adding functional groups. In this study, we report the synthesis of novel Ag NCs using 2-ethanephenylthiolate (SR) as a ligand, highlight critical points addressing stability, and characterize their optical and structural properties. A preliminary electrical characterization revealed high anisotropy, well suited for potential use in electronics/sensing applications. We also present the synthesis and characterization of Ag NCs using 10-carboxylic 2-ol thiolate (SR'COOH) having a terminal carboxylic group for conjugation with amine-containing molecules. We present a preliminary assessment of its bioconjugation capability using bovine serum albumin as a model protein indicating its prospective application as a biomolecule support.
Collapse
Affiliation(s)
- Daniela Caschera
- ISMN-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Benedetta Brugnoli
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Ludovica Primitivo
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Martina De Angelis
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Giuliana Righi
- IBPM-CNR-c/o DipDipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Pilloni
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Gaetano Campi
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | | | - Marzia Pentimalli
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Andrea Masi
- ENEA FSN-COND, Superconductivity Section, Frascati Research Center, 00044 Frascati, Italy
| | - Andrea Liscio
- IMM-CNR, via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Giuseppina Rea
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Lorenza Suber
- ISM-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| |
Collapse
|
4
|
Bain D, Russier-Antoine I, Yuan H, Kolay S, Maclot S, Moulin C, Salmon E, Brevet PF, Pniakowska A, Olesiak-Bańska J, Antoine R. Solvent-Induced Aggregation of Self-Assembled Copper-Cysteine Nanoparticles Reacted with Glutathione: Enhancing Linear and Nonlinear Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16554-16561. [PMID: 37947385 DOI: 10.1021/acs.langmuir.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper-thiolate self-assembly nanostructures are a unique class of nanomaterials because of their interesting properties such as hierarchical structures, luminescence, and large nonlinear optical efficiency. Herein, we synthesized biomolecule cysteine (Cys) and glutathione (GSH) capped sub-100 nm self-assembly nanoparticles (Cu-Cys-GSH NPs) with red fluorescence. The as-synthesized NPs show high emission enhancement in the presence of ethanol, caused by the aggregation-induced emission. We correlated the structure and optical properties of Cu-Cys-GSH NPs by measuring the mass, morphology, and surface charge as well as their two-photon excited fluorescence cross-section (σ2PEPL), two-photon absorption cross-section (σTPA) and first hyperpolarizability (β) of Cu-Cys-GSH NPs in water and water-ethanol using near-infrared wavelength. We found a high β value as (77 ± 10) × 10-28 esu (in water) compared to the reference medium water. The estimated values of σ2PEPL and σTPA are found to be (13 ± 2) GM and (1.4 ± 0.2) × 104 GM, respectively. We hope our investigations of linear and nonlinear optical properties of copper-thiolate self-assemblies in water and its solvent-induced aggregates will open up new possibilities in designing self-assembled systems for many applications including sensing, drug delivery, and catalysis.
Collapse
Affiliation(s)
- Dipankar Bain
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Isabelle Russier-Antoine
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Hao Yuan
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Sarita Kolay
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sylvain Maclot
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Christophe Moulin
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Estelle Salmon
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Pierre-François Brevet
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Anna Pniakowska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław 50-370, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław 50-370, Poland
| | - Rodolphe Antoine
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| |
Collapse
|
5
|
Antoine R. Self-Assembly of Atomically Precise Nanoclusters: From Irregular Assembly to Crystalline Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2551. [PMID: 37764580 PMCID: PMC10535127 DOI: 10.3390/nano13182551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The persistent efforts toward achieving superior properties for assembled nanoscale particles have been held back due to the resulting polydispersity associated with colloidal routes of synthesis [...].
Collapse
Affiliation(s)
- Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Université Lyon, F-69100 Villeurbanne, France
| |
Collapse
|
6
|
Mathew MS, Krishnan G, Mathews AA, Sunil K, Mathew L, Antoine R, Thomas S. Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1874. [PMID: 37368304 DOI: 10.3390/nano13121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The reckless use of non-replenishable fuels by the growing population for energy and the resultant incessant emissions of hazardous gases and waste products into the atmosphere have insisted that scientists fabricate materials capable of managing these global threats at once. In recent studies, photocatalysis has been employed to focus on utilizing renewable solar energy to initiate chemical processes with the aid of semiconductors and highly selective catalysts. A wide range of nanoparticles has showcased promising photocatalytic properties. Metal nanoclusters (MNCs) with sizes below 2 nm, stabilized by ligands, show discrete energy levels and exhibit unique optoelectronic properties, which are vital to photocatalysis. In this review, we intend to compile information on the synthesis, true nature, and stability of the MNCs decorated with ligands and the varying photocatalytic efficiency of metal NCs concerning changes in the aforementioned domains. The review discusses the photocatalytic activity of atomically precise ligand-protected MNCs and their hybrids in the domain of energy conversion processes such as the photodegradation of dyes, the oxygen evolution reaction (ORR), the hydrogen evolution reaction (HER), and the CO2 reduction reaction (CO2RR).
Collapse
Affiliation(s)
- Meegle S Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
- Research and Post Graduate Department of Chemistry, Mar Athanasius College, Kothamangalam 686666, India
| | - Greeshma Krishnan
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Amita Aanne Mathews
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Kevin Sunil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Leo Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
7
|
Liu M, Yuan J, Wang G, Ni N, Lv Q, Liu S, Gong Y, Zhao X, Wang X, Sun X. Shape programmable T1- T2 dual-mode MRI nanoprobes for cancer theranostics. NANOSCALE 2023; 15:4694-4724. [PMID: 36786157 DOI: 10.1039/d2nr07009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The shape effect is an important parameter in the design of novel nanomaterials. Engineering the shape of nanomaterials is an effective strategy for optimizing their bioactive performance. Nanomaterials with a unique shape are beneficial to blood circulation, tumor targeting, cell uptake, and even improved magnetism properties. Therefore, magnetic resonance imaging (MRI) nanoprobes with different shapes have been extensively focused on in recent years. Different from other multimodal imaging techniques, dual-mode MRI can provide imaging simultaneously by a single instrument, which can avoid differences in penetration depth, and the spatial and temporal resolution of multiple imaging devices, and ensure the accurate matching of spatial and temporal imaging parameters for the precise diagnosis of early tumors. This review summarizes the latest developments of nanomaterials with various shapes for T1-T2 dual-mode MRI, and highlights the mechanism of how shape intelligently affects nanomaterials' longitudinal or transverse relaxation, namely sphere, hollow, core-shell, cube, cluster, flower, dumbbell, rod, sheet, and bipyramid shapes. In addition, the combination of T1-T2 dual-mode MRI nanoprobes and advanced therapeutic strategies, as well as possible challenges from basic research to clinical transformation, are also systematically discussed. Therefore, this review will help others quickly understand the basic information on dual-mode MRI nanoprobes and gather thought-provoking ideas to advance the subfield of cancer nanomedicine.
Collapse
Affiliation(s)
- Menghan Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Gongzheng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Qian Lv
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Yufang Gong
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
8
|
Bonačić-Koutecký V, Le Guével X, Antoine R. Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications. Chembiochem 2023; 24:e202200524. [PMID: 36285807 DOI: 10.1002/cbic.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Univ. Grenoble Alpes/INSERM1209/CNRS-UMR5309, Grenoble, France
| | - Rodolphe Antoine
- Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS Univ. Lyon, 69622, Villeurbanne cedex, France
| |
Collapse
|
9
|
Grote F, Lyubartsev AP. Water structure, dynamics and reactivity on a TiO 2-nanoparticle surface: new insights from ab initio molecular dynamics. NANOSCALE 2022; 14:16536-16547. [PMID: 36314644 DOI: 10.1039/d2nr02354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water structure, dynamics and reactivity at the surface of a small TiO2-nanoparticle fully immersed in water was investigated by an ab initio molecular dynamics simulation. Several modes of water binding were identified by assigning each atom to an atom type, representing a distinct chemical environment in the ab initio ensemble, and then computing radial distribution functions between the atom types. Surface reactivity was investigated by monitoring how populations of atom types change during the simulation. In order to acquire further insight, electron densities for a set of representative system snapshots were analyzed using an atoms-in-molecules approach. Our results reveal that water dissociation, where a water molecule splits at a bridging oxygen site to form a hydroxyl group and a protonated oxygen bridge, can occur by a mechanism involving transfer of a proton over several water molecules. The hydroxyl group and protonated oxygen bridge formed in the process persist (on a 10 ps time scale) and the hydroxyl group undergoes exchange using a mechanism similar to the one responsible for water dissociation. Rotational and translational dynamics of water molecules around the nanoparticle were analyzed in terms of reorientational time correlation functions and mean square displacement. While reorientation of water O-H vectors decreases quickly in the proximity of the nanoparticle surface, translational diffusion slows down more gradually. Our results give new insight into water structure, dynamics and reactivity on TiO2-nanoparticle surfaces and suggest that water dissociation on curved TiO2-nanoparticle surfaces can occur via more complex mechanisms than those previously identified for flat defect-free surfaces.
Collapse
Affiliation(s)
- Fredrik Grote
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden.
| |
Collapse
|