1
|
Mu R, Qiao J, Kong C, Hao X, Xu G, Han J, Li X. Response of Typical Shrubs Growth and Soil Nutrients to Graphene Addition in Impoverished Land of the Ulan Buh Desert. PLANTS (BASEL, SWITZERLAND) 2024; 13:3214. [PMID: 39599423 PMCID: PMC11598176 DOI: 10.3390/plants13223214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research subjects. Five graphene addition levels were set: 0 mg/L (C0), 25 mg/L (C1), 50 mg/L (C2), 100 mg/L (C3), and 200 mg/L (C4).A pot experiment was conducted in June 2023 to investigate the effects of graphene addition on shrub growth and soil nutrients. The results showed that the optimal graphene addition levels for A. mongolica, X. sorbifolium, and N. tangutorum were C2, C2, and C3, respectively. Compared with the control, the total biomass of the different shrubs increased by 185.31%, 50.86%, and 161.10%, respectively. However, when the graphene addition exceeded the optimal level, shrub biomass showed a decreasing trend with increasing graphene concentration. Total shrub biomass was positively correlated with soil available nitrogen and potassium, while redundancy analysis indicated that soil organic matter was the primary factor influencing shrub growth. This suggests that graphene promotes shrub growth by affecting soil organic matter and available nutrients. Therefore, graphene addition can enhance soil fertility in barren lands in arid regions and significantly promote shrub growth. However, due to soil leaching effects, this growth-promoting effect may decrease over time.
Collapse
Affiliation(s)
- Ren Mu
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| | - Jun Qiao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China;
| | - Chuijiu Kong
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| | - Xuting Hao
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| | - Guangfu Xu
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| | - Jingfu Han
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| | - Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (R.M.); (C.K.); (X.H.); (G.X.); (J.H.)
| |
Collapse
|
2
|
Fonseca JDS, Wojciechowska E, Kulesza J, Barros BS. Carbon Nanomaterials in Seed Priming: Current Possibilities. ACS OMEGA 2024; 9:44891-44906. [PMID: 39554415 PMCID: PMC11561606 DOI: 10.1021/acsomega.4c07230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
The prevailing agricultural system has become deeply ingrained and insufficient due to outdated practices inherited from the Green Revolution, necessitating innovative approaches for sustainable agricultural development. Nanomaterials possess the potential to significantly improve the efficient utilization of resources while simultaneously encouraging sustainability. Among these, carbonaceous nanomaterials have found diverse applications in agriculture, exhibiting remarkable capabilities in this domain. Notably, using biowaste to produce these materials makes them both cost-effective and environmentally friendly for seed priming. Seed priming is a technique that can potentially enhance germination rates and stress tolerance by effectively regulating gene pathways and metabolism. This review provides a comprehensive summary of recent progress in the field, highlighting the challenges and opportunities of applying carbonaceous materials in seed priming to advance sustainable agriculture practices. The existing reviews provide a general overview of using carbonaceous materials (graphene and derivatives) in agriculture. Yet, they often lack a comprehensive examination of their specific application in seed-related contexts. In this review, we aim to offer a detailed analysis of the application of carbonaceous materials in seed priming and elucidate their influence on germination. Furthermore, the review shows that crop response to carbonaceous nanomaterials is linked to material concentration and crop species.
Collapse
Affiliation(s)
- José
Daniel da Silva Fonseca
- Programa
de Pós-graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Ewa Wojciechowska
- Gdansk
University of Technology, Faculty of Civil
and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências-CTG, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade
Universitária, Recife, Pernambuco 50670-901, Brasil
| |
Collapse
|
3
|
Cao H, Zhang X, Wang H, Ding B, Ge S, Zhao J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024; 12:814. [PMID: 38674758 PMCID: PMC11051958 DOI: 10.3390/microorganisms12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.
Collapse
Affiliation(s)
- Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Xiao Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Sai Ge
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China;
| | - Jianguo Zhao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| |
Collapse
|
4
|
Babangida AA, Uddin A, Stephen KT, Yusuf BA, Zhang L, Ge D. A Roadmap from Functional Materials to Plant Health Monitoring (PHM). Macromol Biosci 2024; 24:e2300283. [PMID: 37815087 DOI: 10.1002/mabi.202300283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.
Collapse
Affiliation(s)
- Abubakar A Babangida
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Azim Uddin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kukwi Tissan Stephen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bashir Adegbemiga Yusuf
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214126, China
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
5
|
Chen Z, Guo Z, Xu N, Cao X, Niu J. Graphene nanoparticles improve alfalfa (Medicago sativa L.) growth through multiple metabolic pathways under salinity-stressed environment. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154092. [PMID: 37716315 DOI: 10.1016/j.jplph.2023.154092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphene, one of the emerging carbon nanomaterials, has many advantages and applications. Salinity stress seriously affects ecology and agroforestry worldwide. The effects of graphene on alfalfa under salinity stress were investigated. The results indicated that graphene promoted alfalfa growth under non-salinity stress but caused some degree of damage to root cells and leaf parameters. Graphene used in salinity stress had a positive effect on growth parameters, chlorophyll, photosynthetic gas parameters, stomatal opening, ion balance, osmotic homeostasis, cell membrane integrity and antioxidant system, while it decreased Na+, lipid peroxidation and reactive oxygen species levels. Correlation analysis revealed that most of the parameters were significantly correlated; and principal component analysis indicated that the first two dimensions (78.1% and 4.1%) explained 82.2% of the total variability, and the majority of them exceeded the average contribution. Additionally, Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis showed that there were numerous differentially expressed genes and pathways to regulate alfalfa responding to salinity stress. Taken together, the findings reveal that graphene does not enter the plant, but improves the properties and adsorption of soil to enhance salt tolerance and seedling growth of alfalfa through morphological, physiological, biochemical, and transcriptomic aspects. Furthermore, this study provides a reference for the application of graphene to improve soil environment and agricultural production.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xinlong Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Islam F, Khan FA, Khan NM, Ahmad S, Alsaiari AA, Almehmadi M, Ahmad N, Ul-Haq Z, Jan AK, Allahyani M, Alsharif A, Falade EO. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS OMEGA 2023; 8:20550-20560. [PMID: 37323383 PMCID: PMC10268258 DOI: 10.1021/acsomega.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.
Collapse
Affiliation(s)
- Fawad Islam
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Mehmood Khan
- Department
of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Amer Alsaiari
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Abdul Khaliq Jan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mamdouh Allahyani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebenezer Ola Falade
- Institute
of Food Science and Technology, Chinese
Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
8
|
Golkar P, Akbari R, Bazarganipour M, Javed R. Biochemical and phytochemical responses of Ammi visnaga L. (Apiaceae) callus culture elicited by SiO 2 and graphene Oxide-SiO 2 nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107741. [PMID: 37192582 DOI: 10.1016/j.plaphy.2023.107741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Ammi visnaga L. is an enriched medicinal plant with medicinally important compounds. Two types of nanoparticles (NPs) including silica (SiO2) and graphene oxide bound with SiO2 (GO-SiO2) NPs at different concentrations (0, 15, 25 mg L-1) were used as elicitors to investigate their effects on callus morphology, H2O2 content, total phenolic content (TPC), total flavonoids content (TFC), ferric reducing/antioxidant power (FRAP), and few antioxidant enzymes such as catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) in the callus cultures of A. visnaga. The effects of elicitation of both NPs on calli were observed using a scanning electron microscope (SEM). The 15 mg L-1 concentration of GO-SiO2 NPs produced the highest TPC (193.3 mg GAE g-1 FW), CAT (13.1 U mg-1 Protein), GPX (0.0089 U mg-1 Protein), and APX (0.079 U mg-1 Protein). Whereas, the maximum content of H2O2 (0.68 μmol g-1 FW), FRAP (0.0092 μmol mg-1), and TFC (62.27 mg QE g-1 FW) was observed at 25 mg L-1 and 15 mg L-1 of SiO2 NPs, respectively. Conclusively, in the callus culture of A. visnaga, the 15 mg L-1 concentration of GO-SiO2 NPs was the most suitable dosage for enhancing the enzymatic antioxidant activities (CAT, GPX, APX) and TPC, rather than SiO2 NPs.
Collapse
Affiliation(s)
- Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Reihaneh Akbari
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mehdi Bazarganipour
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| |
Collapse
|
9
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
10
|
Chen Z, Zhao J, Liu Z, Bai X, Li W, Guan Z, Zhou M, Zhu H. Graphene-Delivered Insecticides against Cotton Bollworm. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2731. [PMID: 36014596 PMCID: PMC9412252 DOI: 10.3390/nano12162731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Nanopesticides can facilitate controlled release kinetics and efficiently enhance the permeability of active ingredients to reduce the dosage and loss of pesticides. To clarify the synergistic mechanism of graphene-insecticide nanocarriers against cotton bollworm, treatment groups, namely, control, graphene (G), insecticide (lambda-cyhalothrin (Cyh) and cyfluthrin (Cyf)), and graphene-delivered insecticide groups were used to treat the third-instar larvae of cotton bollworm. The variations in phenotypes, namely, the body length, body weight, and mortality of the cotton bollworm, were analyzed. The results show that graphene enhances the insecticidal activity of lambda-cyhalothrin and cyfluthrin against cotton bollworm. The two graphene-delivered insecticides with optimal compositions (3:1) had the strongest inhibitory effects and the highest mortality rates, with the fatality rates for the 3/1 Cyh/G and Cyf/G mixture compositions being 62.91% and 38.89%, respectively. In addition, the 100 μg/mL Cyh/G mixture had the greatest inhibitory effect on cotton bollworm, and it decreased the body length by 1.40 mm, decreased the weight by 1.88 mg, and had a mortality rate of up to 61.85%. The 100 and 150 μg/mL Cyh/G mixtures achieved the same mortality rate as that of lambda-cyhalothrin, thus reducing the use of the insecticide by one-quarter. The graphene-delivered insecticides could effectively destroy the epicuticle spine cells of the cotton bollworm by increasing the permeability and, thus, the toxicity of the insecticides.
Collapse
Affiliation(s)
- Zhiwen Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Zehui Liu
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Xiuli Bai
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Weijia Li
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Zhifang Guan
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ming Zhou
- School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Hongwei Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|