1
|
Rabchinskii MK, Sysoev VV, Brzhezinskaya M, Solomatin MA, Gabrelian VS, Kirilenko DA, Stolyarova DY, Saveliev SD, Shvidchenko AV, Cherviakova PD, Varezhnikov AS, Pavlov SI, Ryzhkov SA, Khalturin BG, Prasolov ND, Brunkov PN. Rationalizing Graphene-ZnO Composites for Gas Sensing via Functionalization with Amines. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:735. [PMID: 38727329 PMCID: PMC11085583 DOI: 10.3390/nano14090735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.
Collapse
Affiliation(s)
- Maxim K. Rabchinskii
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov 410054, Russia; (V.V.S.); (M.A.S.); (A.S.V.)
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany;
| | - Maksim A. Solomatin
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov 410054, Russia; (V.V.S.); (M.A.S.); (A.S.V.)
| | - Vladimir S. Gabrelian
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Demid A. Kirilenko
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Dina Yu. Stolyarova
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia;
| | - Sviatoslav D. Saveliev
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov 410054, Russia; (V.V.S.); (M.A.S.); (A.S.V.)
| | - Alexander V. Shvidchenko
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Polina D. Cherviakova
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Alexey S. Varezhnikov
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov 410054, Russia; (V.V.S.); (M.A.S.); (A.S.V.)
| | - Sergey I. Pavlov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Sergei A. Ryzhkov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov 410054, Russia; (V.V.S.); (M.A.S.); (A.S.V.)
| | - Boris G. Khalturin
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Nikita D. Prasolov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| | - Pavel N. Brunkov
- Ioffe Institute, Politekhnicheskaya St. 26, Saint Petersburg 194021, Russia; (V.S.G.); (D.A.K.); (S.D.S.); (A.V.S.); (P.D.C.); (S.I.P.); (S.A.R.); (B.G.K.); (N.D.P.); (P.N.B.)
| |
Collapse
|
2
|
Kang W, Guo F, Mao L, Liu Y, Han C, Yuan L. Ni(OH) 2 surface-modified hierarchical ZnIn 2S 4 nanosheets: dual photocatalytic application and mechanistic insights. Phys Chem Chem Phys 2023. [PMID: 38048074 DOI: 10.1039/d3cp04443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The simultaneous utilization of electrons and holes to couple photocatalytic H2 production with selective biomass transformation has attracted immense interest toward achieving sustainability in the fields of energy and chemical industry. In this study, by assembling highly dispersed Ni(OH)2 onto ZnIn2S4 (ZIS), efficient H2 evolution along with highly selective photocatalytic oxidation of furfuryl alcohol (FA) to furfural (FF) in pure water was achieved under anaerobic conditions. The H2 production and FA conversion rates over the optimal Ni-ZIS sample reached about 686 and 583 μmol g-1 h-1, respectively, about 4.9 and 1.7 folds as those of pure ZIS. Moreover, the formation of by-products with C-C coupling was dramatically suppressed over Ni-ZIS, resulting in higher selectivity for FF (97%), which is about 2.7-fold that of pure ZIS (36%). Deep mechanistic studies were conducted to reveal the structural evolution and cocatalyst effects of Ni(OH)2. This study not only offers a feasible paradigm for modifying the surface of catalysts to tune the photoactivity and selectivity for product-oriented alcohol oxidation coupled with efficient H2 production in water but also reveals the working mechanism of the deposited Ni(OH)2 over ZIS toward coupling reactions.
Collapse
Affiliation(s)
- Wanqiong Kang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lei Mao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Chuang Han
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|