1
|
Dall'Osto G, Corni S. Time-dependent surface-enhanced Raman scattering: A theoretical approach. J Chem Phys 2024; 161:044103. [PMID: 39037131 DOI: 10.1063/5.0214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
A new procedure for computing the time-dependent Raman scattering of molecules in the proximity of plasmonic nanoparticles (NPs) is proposed, drawing inspiration from the pioneering Lee and Heller's theory. This strategy is based on a preliminary simulation of the molecular vibronic wavefunction in the presence of a plasmonic nanostructure and an incident light pulse. Subsequently, the Raman signal is evaluated through an inverse Fourier Transform of the coefficients' dynamics. Employing a multiscale approach, the system is treated by coupling the quantum mechanical description of the molecule with the polarizable continuum model for the NP. This method offers a unique advantage by providing insights into the time evolution of the plasmon-enhanced Raman signal, tracking the dynamics of the incident electric field. It not only provides for the total Raman signal at the process's conclusion but also gives transient information. Importantly, the flexibility of this approach allows for the simulation of various incident electric field profiles, enabling a closer alignment with experimental setups. This adaptability ensures that the method is relevant and applicable to diverse real-world scenarios.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35100, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena 41100, Italy
| |
Collapse
|
2
|
Parolin G, Peruffo N, Mancin F, Collini E, Corni S. Molecularly Detailed View of Strong Coupling in Supramolecular Plexcitonic Nanohybrids. NANO LETTERS 2024; 24:2273-2281. [PMID: 38261782 DOI: 10.1021/acs.nanolett.3c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.
Collapse
Affiliation(s)
- Giovanni Parolin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Peruffo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
- CNR Institute of Nanoscience, 41125 Modena, Italy
| |
Collapse
|
3
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
4
|
Peruffo N, Bruschi M, Fresch B, Mancin F, Collini E. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12793-12806. [PMID: 37641919 PMCID: PMC10501205 DOI: 10.1021/acs.langmuir.3c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Colloidal plexcitonic materials (CPMs) are a class of nanosystems where molecular dyes are strongly coupled with colloidal plasmonic nanoparticles, acting as nanocavities that enhance the light field. As a result of this strong coupling, new hybrid states are formed, called plexcitons, belonging to the broader family of polaritons. With respect to other families of polaritonic materials, CPMs are cheap and easy to prepare through wet chemistry methodologies. Still, clear structure-to-properties relationships are not available, and precise rules to drive the materials' design to obtain the desired optical properties are still missing. To fill this gap, in this article, we prepared a dataset with all CPMs reported in the literature, rationalizing their design by focusing on their three main relevant components (the plasmonic nanoparticles, the molecular dyes, and the capping layers) and identifying the most used and efficient combinations. With the help of statistical analysis, we also found valuable correlations between structure, coupling regime, and optical properties. The results of this analysis are expected to be relevant for the rational design of new CPMs with controllable and predictable photophysical properties to be exploited in a vast range of technological fields.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Matteo Bruschi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Barbara Fresch
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| |
Collapse
|
5
|
Dimitriev O, Slominskii Y, Giancaspro M, Rizzi F, Depalo N, Fanizza E, Yoshida T. Assembling Near-Infrared Dye on the Surface of Near-Infrared Silica-Coated Copper Sulphide Plasmonic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:510. [PMID: 36770471 PMCID: PMC9919055 DOI: 10.3390/nano13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Functionalization of colloidal nanoparticles with organic dyes, which absorb photons in complementary spectral ranges, brings a synergistic effect for harvesting additional light energy. Here, we show functionalization of near-infrared (NIR) plasmonic nanoparticles (NPs) of bare and amino-group functionalized mesoporous silica-coated copper sulphide (Cu2-xS@MSS and Cu2-xS@MSS-NH2) with specific tricarbocyanine NIR dye possessing sulfonate end groups. The role of specific surface chemistry in dye assembling on the surface of NPs is demonstrated, depending on the organic polar liquids or water used as a dispersant solvent. It is shown that dye binding to the NP surfaces occurs with different efficiency, but mostly in the monomer form in polar organic solvents. Conversely, the aqueous medium leads to different scenarios according to the NP surface chemistry. Predominant formation of the disordered dye monomers occurs on the bare surface of mesoporous silica shell (MSS), whereas the amino-group functionalized MSS accepts dye predominantly in the form of dimers. It is found that the dye-NP interaction overcomes the dye-dye interaction, leading to disruption of dye J-aggregates in the presence of the NPs. The different organization of the dye molecules on the surface of silica-coated copper sulphide NPs provides tuning of their specific functional properties, such as hot-band absorption and photoluminescence.
Collapse
Affiliation(s)
- Oleg Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, 03028 Kyiv, Ukraine
- Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Yuri Slominskii
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine
| | - Mariangela Giancaspro
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Federica Rizzi
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Tsukasa Yoshida
- Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| |
Collapse
|
6
|
Peruffo N, Mancin F, Collini E. Ultrafast Dynamics of Multiple Plexcitons in Colloidal Nanomaterials: The Mediating Action of Plasmon Resonances and Dark States. J Phys Chem Lett 2022; 13:6412-6419. [PMID: 35815626 PMCID: PMC9310092 DOI: 10.1021/acs.jpclett.2c01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plexcitons, that is, mixed plasmon-exciton states, are currently gaining broad interest to control the flux of energy at the nanoscale. Several promising properties of plexcitonic materials have already been revealed, but the debate about their ultrafast dynamic properties is still vibrant. Here, pump-probe spectroscopy is used to characterize the ultrafast dynamics of colloidal nanohybrids prepared by coupling gold nanoparticles and porphyrin dyes, where one or two sets of plexcitonic resonances can be selectively activated. We found that these dynamics are strongly affected by the presence of a reservoir of states including plasmon resonances and dark states. The time constants regulating the plexciton relaxations are significantly longer than the typical values found in the literature and can be modulated over more than 1 order of magnitude, opening possible interesting perspectives to modify rates of chemically relevant molecular processes.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, 35122 Padova, Italy
| |
Collapse
|