1
|
El-Yadri M, El Hamdaoui J, Aghoutane N, Pérez LM, Baskoutas S, Laroze D, Díaz P, Feddi EM. Optoelectronic Properties of a Cylindrical Core/Shell Nanowire: Effect of Quantum Confinement and Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1334. [PMID: 37110919 PMCID: PMC10141194 DOI: 10.3390/nano13081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
This study investigates the effect of quantum size and an external magnetic field on the optoelectronic properties of a cylindrical AlxGa1-xAs/GaAs-based core/shell nanowire. We used the one-band effective mass model to describe the Hamiltonian of an interacting electron-donor impurity system and employed two numerical methods to calculate the ground state energies: the variational and finite element methods. With the finite confinement barrier at the interface between the core and the shell, the cylindrical symmetry of the system revealed proper transcendental equations, leading to the concept of the threshold core radius. Our results show that the optoelectronic properties of the structure strongly depend on core/shell sizes and the strength of the external magnetic field. We found that the maximum probability of finding the electron occurs in either the core or the shell region, depending on the value of the threshold core radius. This threshold radius separates two regions where physical behaviors undergo changes and the applied magnetic field acts as an additional confinement.
Collapse
Affiliation(s)
- Mohamed El-Yadri
- Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Jawad El Hamdaoui
- Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Noreddine Aghoutane
- Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| | - Laura M. Pérez
- Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - David Laroze
- Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| | - Pablo Díaz
- Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - El Mustapha Feddi
- Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, Morocco
- Institute of Applied Physics, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, Ben Guerir 43150, Morocco
| |
Collapse
|
2
|
Input of Moldova in shaping modern electrochemical science and technology. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Moise CC, Mihai GV, Anicăi L, Monaico EV, Ursaki VV, Enăchescu M, Tiginyanu IM. Electrochemical Deposition of Ferromagnetic Ni Nanoparticles in InP Nanotemplates Fabricated by Anodic Etching Using Environmentally Friendly Electrolyte. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3787. [PMID: 36364561 PMCID: PMC9656686 DOI: 10.3390/nano12213787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Porous InP templates possessing a thickness of up to 100 µm and uniformly distributed porosity were prepared by anodic etching of InP substrates exhibiting different electrical conductivities, involving an environmentally friendly electrolyte. Ni nanoparticles were successfully directly deposited by pulsed electroplating into prefabricated InP templates without any additional deposition of intermediary layers. The parameters of electrodeposition, including the pulse amplitude, pulse width and interval between pulses, were optimized to reach a uniform metal deposition covering the inner surface of the nanopores. The electrochemical dissolution of n-InP single crystals was investigated by measuring the current-voltage dependences, while the Ni-decorated n-InP templates have been characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The proposed technology is expected to be of interest for sensing and photocatalytic applications, as well as for the exploration of their plasmonic and magnetic properties.
Collapse
Affiliation(s)
- Călin Constantin Moise
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- S.C. NanoPRO START MC S.R.L., Mitropolit Antim Ivireanu Street 40, 110310 Pitesti, Romania
| | - Geanina Valentina Mihai
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Liana Anicăi
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Eduard V. Monaico
- National Center for Materials Study and Testing, Technical University of Moldova, Bd. Stefan cel Mare 168, 2004 Chisinau, Moldova
| | - Veaceslav V. Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, Bd. Stefan cel Mare 168, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| | - Marius Enăchescu
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Ion M. Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Bd. Stefan cel Mare 168, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| |
Collapse
|
4
|
Monaico EV, Morari V, Kutuzau M, Ursaki VV, Nielsch K, Tiginyanu IM. Magnetic Properties of GaAs/NiFe Coaxial Core-Shell Structures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186262. [PMID: 36143574 PMCID: PMC9502629 DOI: 10.3390/ma15186262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Uniform nanogranular NiFe layers with Ni contents of 65%, 80%, and 100% have been electroplated in the potentiostatic deposition mode on both planar substrates and arrays of nanowires prepared by the anodization of GaAs substrates. The fabricated planar and coaxial core-shell ferromagnetic structures have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). To determine the perspectives for applications, a comparative analysis of magnetic properties, in terms of the saturation and remanence moment, the squareness ratio, and the coercivity, was performed for structures with different Ni contents.
Collapse
Affiliation(s)
- Eduard V. Monaico
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
| | - Vadim Morari
- Institute of Electronic Engineering and Nanotechnologies “D. Ghitu”, 2028 Chisinau, Moldova
| | - Maksim Kutuzau
- Institute for Metallic Materials (IMW), Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Veaceslav V. Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| | - Kornelius Nielsch
- Institute for Metallic Materials (IMW), Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Ion M. Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| |
Collapse
|