1
|
Shilla DJ, Matiya DJ, Nyamandito NL, Tambwe MM, Quilliam RS. Insecticide tolerance of the malaria vector Anopheles gambiae following larval exposure to microplastics and insecticide. PLoS One 2024; 19:e0315042. [PMID: 39666697 PMCID: PMC11637391 DOI: 10.1371/journal.pone.0315042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastic (MP) pollution poses a global threat to urban and rural environments and can have negative effects on a range of organisms. Mosquito larvae often breed in water contaminated with MPs, and given their important role as disease vectors, understanding the effects of larval exposure to MPs is critical for understanding the potential impact on their life history traits and subsequent methods for their control. Here, we have exposed first instar larvae of Anopheles gambiae s.s. to environmentally realistic concentrations of PET microplastics (1.0-7.5 μm) and a sub-lethal dose of insecticide mixed with microplastics, and quantified survival, development, and susceptibility of larvae over six generations. Adult mosquitoes from larvae exposed to these treatments were subsequently tested for insecticide resistance. Exposure to MPs decreased larval survival rates compared to the control; however, over six generations of exposure, survival rates significantly increased. Similarly, there was a higher survival rate of those larvae exposed to MPs mixed with insecticide compared to those exposed to just the insecticide, and survival increased further over the six generations. For the adult mosquito susceptibility tests, knockdown times (KDTs) indicated some level of insecticide tolerance when larvae had been previously exposed to MPs and insecticides. This is the first study demonstrating the selection of insecticide tolerance in adult mosquitoes after consecutive generations of larval exposures to varying concentrations of MPs. Therefore, field-scale studies are now urgently required to quantify whether larval insecticides are less effective at controlling mosquitoes in breeding sites commonly polluted with MPs.
Collapse
Affiliation(s)
- Dativa J. Shilla
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Deokary Joseph Matiya
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Nyanda Laini Nyamandito
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
- Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
2
|
Cui L, Liang R, Zhang C, Zhang R, Wang H, Wang XX. Coupling polyethylene microplastics with other pollutants: Exploring their combined effects on plant health and technologies for mitigating toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176657. [PMID: 39362539 DOI: 10.1016/j.scitotenv.2024.176657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The presence of microplastics in agricultural soils has raised concerns regarding their potential impacts on ecosystem health and plant growth. The introduction of microplastics into soil can alter its physicochemical properties, leading to adverse effects on plant development. Furthermore, the adsorption capabilities of microplastics may enhance the toxicity of soil pollutants, potentially resulting in detrimental effects on plant life. Large-sized microplastics may become adhered to root surfaces, impeding stomatal function and restricting nutrient uptake. Conversely, smaller microplastics and nano-plastics may be internalized by plants, causing cellular damage and genotoxicity. In addition, the presence of microplastics in soil can indirectly affect plant growth and development by altering the soil environment. Therefore, it is essential to investigate the potential impacts of microplastics on agricultural ecosystems and develop strategies to mitigate their effects. This review describes the adsorption power between polyethylene microplastics and pollutants (heavy metals, polycyclic aromatic hydrocarbons and antibiotics) commonly found in agricultural fields and the factors affecting the adsorption process. Additionally, the direct and indirect effects of microplastics on plants are summarized. Most of the single or combined microplastic contaminants showed negative effects on plant growth, with a few beneficial effects related to the characteristics of the microplastics and environmental factors. Currently microbial action and the application of soil conditioners or plant growth promoters can alleviate the effects of microplastics on plants to a certain extent. In light of the complex nature of soil environments, future research should concentrate on mitigate and control these interactions and the impact of compound pollution on ecosystems.
Collapse
Affiliation(s)
- Linmei Cui
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Rong Liang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Hong Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Xin-Xin Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Li X, Ding G, Li T, Pu Q, Wang Z, Li Y, Jiang X, Li X. Microplastics in freshwater food chains: Priority list based on identification of oxidative stress response characteristic. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135893. [PMID: 39305596 DOI: 10.1016/j.jhazmat.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Exogenous exposure to high concentrations of microplastics (MPs) cause oxidative damage to freshwater food chains (FFCs). Thus, the patterns and mechanisms of oxidative stress responses (OSRs) induced by MPs in FFC organisms were investigated using theoretical simulation methods. Results showed an increasing (reduced) OSR was found in lower trophic levels (higher trophic levels). Besides, polycarbonate (polyvinyl chloride) causes the most (least) significant OSRs in FFC organisms, respectively. The impacts of MP additives were also analyzed using the full factorial experimental design, revealing flame retardants significantly influence oxidative stress variability. A constructive solution of "restriction-control-focus" is proposed for different types of MPs by the coefficient of variation-corrected CRITIC and the nested mean classification method. The mechanism analysis revealed a positive correlation between protein secondary structure orderliness and OSRs. Proteins in organisms that contain a high proportion of hydrophobic non-polar amino acids are more likely to bind to MP and enhance OSRs. This is the first study assessing the OSR patterns and ecological risks of MPs and their additives in FFCs with a proposed priority list, providing theoretical support for risk assessments and management strategies in freshwater environments.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Gaolei Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Fröhlich E. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:315-344. [PMID: 39324551 DOI: 10.1080/10937404.2024.2406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
5
|
Titov I, Semerád J, Boháčková J, Beneš H, Cajthaml T. Microplastics meet micropollutants in a central european river stream: Adsorption of pollutants to microplastics under environmentally relevant conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124616. [PMID: 39067740 DOI: 10.1016/j.envpol.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastics have emerged as pervasive pollutants in aquatic environments, and their interaction with organic contaminants poses a significant environmental challenge. This study aimed to explore the adsorption of micropollutants onto microplastics in a river, examining different plastic materials and the effect of aging on adsorption capacity. Microplastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC)) were introduced into a river stream, and a comprehensive analysis involving 297 organic pollutants was conducted. Passive samplers were deployed to monitor micropollutant presence in the river. Sixty-four analytes were identified in the river flow, with telmisartan being the most prevalent. Nonaged PVC showed the highest telmisartan concentration at 279 ng/g (168 ng/m2 regarding the microplastic surface), while aged PVC exhibited a fourfold decrease. Conversely, aged LDPE preferentially adsorbed metoprolol and tramadol, with concentrations increasing 12- and 3-fold, respectively, compared to nonaged LDPE. Azithromycin and clarithromycin, positively charged compounds, exhibited higher sorption to PET microplastics, regardless of aging. Diclofenac showed higher concentrations on nonaged PVC compared to aged PVC. Aging induced structural changes in microplastics, including color alterations, smaller particle production, and increased specific surface area. These changes influenced micropollutant adsorption, with hydrophobicity, dissociation constants, and the ionic form of pollutants being key factors. Aged microplastics generally showed different sorption properties. A comparison of microplastics and control sand particles indicated preferential micropollutant sorption to microplastics, underscoring their role as vectors for contaminant transport in aquatic ecosystems. Analysis of river sediment emphasized the significance of contact time in pollutant accumulation. Overall, this study provides insights into the complex interactions between microplastics and organic pollutants under environmental conditions and contributes to a better understanding of the fate and behavior of these two types of contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Ivan Titov
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Boháčková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague, 6, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic.
| |
Collapse
|
6
|
Williams WA, Aravamudhan S. Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers (Basel) 2024; 16:2837. [PMID: 39408547 PMCID: PMC11479023 DOI: 10.3390/polym16192837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created "primary" category or the degradation derivative "secondary" category where the particles exhibit different physiochemical characteristics that attenuate their toxicities. However, some particle types are more well documented in terms of their fate in the environment and potential toxicological effects (secondary) versus their industrial fabrication and chemical characterization (primary). Fourier Transform Infrared Spectroscopy (FTIR/µ-FTIR), Raman/µ-Raman, Proton Nuclear Magnetic Resonance (H-NMR), Curie Point-Gas Chromatography-Mass Spectrometry (CP-gc-MS), Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Nanoparticle Tracking Analysis (NTA), Field Flow Fractionation-Multiple Angle Light Scattering (FFF-MALS), Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Differential Mobility Particle [Sizing] (DMPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microspectroscopy (STXM) are reviewed as part of a suite of characterization methods for physiochemical ascertainment and distinguishment. In addition, Optical-Photothermal Infrared Microspectroscopy (O-PTIR), Z-Stack Confocal Microscopy, Mueller Matrix Polarimetry, and Digital Holography (DH) are touched upon as a suite of cutting-edge modes of characterization. Organizations, like the water treatment or waste management industry, and those in groups that bring awareness to this issue, which are in direct contact with the hydrosphere, can utilize these techniques in order to sense and remediate this plastic polymer pollution. The primary goal of this review paper is to highlight the extent of plastic pollution in the environment as well as introduce its effect on the biodiversity of the planet while underscoring current characterization techniques in this field of research. The secondary goal involves illustrating current and theoretical avenues in which future research needs to address and optimize MPL/NPL remediation, utilizing nanotechnology, before this sleeping giant of a problem awakens.
Collapse
Affiliation(s)
- Wesley Allen Williams
- Aravamudhan Lab, Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | | |
Collapse
|
7
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
8
|
Anindita MA, Ismanto A, Zainuri M, Hadibarata T, Kunarso K, Maslukah L, Widada S, Indrayanti E, Widiaratih R, Sugianto DN, Rochaddi B, Helmi M, Atmodjo W. Trajectory of microplastic particles with 2-dimensional hydrodynamic modelling approach at Pekalongan waters, Central Java, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:832. [PMID: 39177841 DOI: 10.1007/s10661-024-13016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This research aims to understand the extent of microplastic contamination in Pekalongan waters, Central Java, and its potential impact on fishing grounds, aligning with Indonesia's National Action Plan for Handling Marine Debris 2018-2025. The study employs a 2D hydrodynamics modelling approach with Mike 21 Software to map the spatial distribution of microplastic movement concerning fishing areas during the west and east monsoon seasons. The results showed that microplastic particles follow tidal currents in Pekalongan waters, with their movement influenced by factors such as current, wind, and tidal conditions. The trajectory of microplastics entering fishing ground areas poses potential contamination risk for fish caught by fishermen, threatening the health of marine ecosystems and the stability of their structure and function.
Collapse
Affiliation(s)
- Malya Asoka Anindita
- Master of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia.
| | - Muhammad Zainuri
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Malaysia
| | - Kunarso Kunarso
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Sugeng Widada
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Elis Indrayanti
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Rikha Widiaratih
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Denny Nugroho Sugianto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Baskoro Rochaddi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Muhammad Helmi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Warsito Atmodjo
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
9
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Wang M, Jiang X, Wei Z, Wang L, Song J, Cen P. Enhanced Cadmium Adsorption Dynamics in Water and Soil by Polystyrene Microplastics and Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1067. [PMID: 38998672 PMCID: PMC11243743 DOI: 10.3390/nano14131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Microplastics (MPs) are prevalent emerging pollutants in soil environments, acting as carriers for other contaminants and facilitating combined pollution along with toxic metals like cadmium (Cd). This interaction increases toxic effects and poses substantial threats to ecosystems and human health. The objective of this study was to investigate the hydrodynamic adsorption of Cd by conducting experiments where polystyrene microplastics (PS) and biochar (BC) coexisted across various particle sizes (10 µm, 20 µm, and 30 µm). Then, soil incubation experiments were set up under conditions of combined pollution, involving various concentrations (0.5 g·kg-1, 5 g·kg-1, 50 g·kg-1) and particle sizes of PS and BC to assess their synergistic effects on the soil environment. The results suggest that the pseudo-second-order kinetic model (R2 = 0.8642) provides a better description of the adsorption dynamics of Cd by PS and BC compared to the pseudo-first-order kinetic model (R2 = 0.7711), with an adsorption saturation time of 400 min. The Cd adsorption process in the presence of PS and BC is more accurately modeled using the Freundlich isotherm (R2 > 0.98), indicating the predominance of multilayer physical adsorption. The coexistence of 10 µm and 20 µm PS particles with BC enhanced Cd absorption, while 30 µm PS particles had an inhibitory effect. In soil incubation experiments, variations in PS particle size increased the exchangeable Cd speciation by 99.52% and decreased the residual speciation by 18.59%. The addition of microplastics notably impacted the exchangeable Cd speciation (p < 0.05), with smaller PS particles leading to more significant increases in the exchangeable content-showing respective increments of 45.90%, 106.96%, and 145.69%. This study contributes to a deeper understanding of the mitigation mechanisms of biochar in the face of combined pollution from microplastics and heavy metals, offering theoretical support and valuable insights for managing such contamination scenarios.
Collapse
Affiliation(s)
- Mengmeng Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Xuyou Jiang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jiashu Song
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Peitong Cen
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| |
Collapse
|
11
|
Carnevale Miino M, Galafassi S, Zullo R, Torretta V, Rada EC. Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172675. [PMID: 38670366 DOI: 10.1016/j.scitotenv.2024.172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
In last 10 years, the interest about the presence of microplastics (MPs) in the environment has strongly grown. Wastewaters function as a carrier for MPs contamination from source to the aquatic environment, so the knowledge of the fate of this emerging contaminant in wastewater treatment plants (WWTPs) is a priority. This work aims to review the presence of MPs in the influent wastewater (WW) and the effectiveness of the treatments of conventional WWTPs. Moreover, the negative impacts of MPs on the management of the processes have been also discussed. The work also focuses on the possible approaches to tackle MPs contamination enhancing the effectiveness of the WWTPs. Based on literature results, despite WWTPs are not designed for MPs removal from WW, they can effectively remove the MPs (up to 99 % in some references). Nevertheless, they normally act as "hotspots" of MPs contamination considering the remaining concentration of MPs in WWTPs' effluents can be several orders of magnitude higher than receiving waters. Moreover, MPs removed from WW are concentrated in sewage sludge (potentially >65 % of MPs entering the WWTP) posing a concern in case of the potential reuse as a soil improver. This work aims to present a paradigm shift intending WWTPs as key barriers for environmental protection. Approaches for increasing effectiveness against MPs have been discussed in order to define the optimal point(s) of the WWTP in which these technologies should be located. The need of a future legislation about MPs in water and sludge is discussed.
Collapse
Affiliation(s)
- Marco Carnevale Miino
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Rosa Zullo
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy.
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
12
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
13
|
Pietrelli L. Fate of the biofilm chips overflowed from a wastewater treatment plant. MARINE POLLUTION BULLETIN 2024; 200:116142. [PMID: 38359476 DOI: 10.1016/j.marpolbul.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
In February 2018 over 100 millions of polyethylene biofilm chips overflowed from a wastewater treatment plant located at Capaccio Paestum (Italy) and due to the Thyrrhenian Sea currents, in few days they invaded the coasts of Campania, Lazio and Tuscany. During the following months the diffusion involves all the coasts of the western Mediterranean, including Spain, France and Tunisia. Samples of chips were recovered mainly along the Latium coasts (Italy) during the last 6 years. Following the exposure of the biofilm chips to the environmental conditions, the effect of natural weathering on polyethylene have been studied. The following annual decreases were evaluated: thickness 9.5 μm, diameter 18.5 μm and weight 3.7 mg while the average value of the size of all recovered items (n = 60) are: thickness = 2.936 ± 0.0406 mm, diameter = 44.349 ± 0.1266 mm and weight = 1.1593 ± 0.0248 g. Considering the weight loss, it was calculated that the complete mineralization of the disks will occur in 310 years producing about 0.5 tons of microplastics per year. FTIR analysis was used to investigate the change of chemical structure of the polyethylene. The Carbonyl index (CI), Vinyl index (VI) and Hydroxyl normalized absorbance peak were used to evaluate the polymer degradation while Scanning Electron Microscopy (SEM) was used to characterize the surface of the polymer samples. It was observed that erosion/degradation increases with time spent in the environment, above all from the last two years. The static contact angle was always >90° confirming that the surface of the biofilm chip is hydrophilic. The Oxygen/Carbon ratio increase with time: 0.18 and 0.27 has been found for 2018 and 2023 disks respectively confirming the progressive oxidative process. From TGA analysis a slightly reduction of decomposition temperature has been evaluated.
Collapse
Affiliation(s)
- Loris Pietrelli
- Legambiente, Scientific Committee, Via Salaria 403, 00199 Rome, Italy.
| |
Collapse
|
14
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Xiang P, Liao W, Xiong Z, Xiao W, Luo Y, Peng L, Zou L, Zhao C, Li Q. Effects of polystyrene microplastics on the agronomic traits and rhizosphere soil microbial community of highland barley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167986. [PMID: 37879483 DOI: 10.1016/j.scitotenv.2023.167986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the influence of polystyrene microplastics (MPs) with two different particle sizes (<1 mm, 1-5 mm) and three concentrations (1 g/m2, 10 g/m2, 50 g/m2), as well as added degrading bacteria, on the agronomic traits of highland barley and the bacterial communities in the rhizosphere soil. Results revealed that the small particle size treatment had a significant effect on reducing the 1000-grain weight of highland barley, while the large particle size treatment had an effect on reducing the spike length, width, and awn length (P < 0.05). Additionally, the MP treatment was found to significantly reduce the rhizosphere soil bacterial diversity and richness, including the Shannon, Chao1, observed species, and dominance indices (P < 0.05). Interestingly, the inoculation treatment also reduced microbial diversity, though the microbial diversity after treatment was similar to that of the control community structure, indicating its regulating effect on the soil microbial community. The abundance of Domibacillus, Pedosphaeraceae, and Enterococcus decreased due to the MP treatment, whereas Achromobacter, Massilia, Ralstonia, and Nitrosospira increased (P < 0.05). Furthermore, functional prediction indicated that MP treatment resulted in the enrichment of microbial functions, such as an AraC-type DNA-binding domain, etc. The microbial communities exposed to different sizes and concentrations of MPs had their own unique functions in response to the effects of the MPs. This study provided novel insights into the effects of different particle sizes and concentrations of MPs on the rhizosphere microbial community and agronomic traits of highland barley. It could be used to improve the understanding of the impact of MPs on the rhizosphere soil microecology and enhance bioremediation of MPs.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenlong Liao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Abbasi S. Uncovering the intricate relationship between plant nutrients and microplastics in agroecosystems. CHEMOSPHERE 2024; 346:140604. [PMID: 37926162 DOI: 10.1016/j.chemosphere.2023.140604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Recent scientific and media focus has increased on the impact of microplastics (MPs) on terrestrial and soil ecosystems. However, the interactions between MPs with macronutrients and micronutrients and their potential consequences for the agroecosystem are not well understood. Wheat (Triticum aestivum) is a staple food grown globally and has special importance for nations economies. Different elements can cause dangerous outcomes for wheat quality and production yield. In this study, batch adsorption experiments were done using 1 g of polyethylene tetra phthalate MP particles (PET-MPs) in varying concentrations of thirteen elements. The adsorption data were fitted by two common adsorption models (Langmuir and Freundlich). The effect of pH on the speciation of elements in aqueous solutions was investigated. The non-invasive characterization methods indicate the importance of O- and H-containing groups as the main component of selected MPs in controlling the adsorption of the elements ions. In the current study, adsorption and potential transport of the adsorbed macronutrients (K and Na) and micronutrients (Ni, Co, Cu, Al, Ba, Se, Fe, As, B, V and Ag) which include some beneficial (Na, Se, V), and non-essential or toxic elements (Al, As, Ag, Ba) onto MPs to the simulated roots of wheat were evaluated. The maximum sorption capacities of K+> Ni+2> Na+ > Co2+> Cu2+>Al+3 >Ba+2 >Se4+>Fe2+ >As5+ >B3+ >V5+> Ag + on PET-MPs at pH 5.8 and 25 ± 1 °C were 290.6 > 0.52> 0.51 > 0.20> 0.10 > 0.051> 0.024 > 0.003> 0.003 > 0.0015> 5.05 × 10-4> 1.7 × 10-4>3.7 × 10-6 mg g-1, respectively. The results highlight the importance of PET-MPs in controlling element adsorption in the rhizosphere. Our observations provide a good start for understanding the adsorption of multiple elements from the soil rhizosphere zone by PET-MPs.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran.
| |
Collapse
|
17
|
Papac Zjačić J, Tonković S, Pulitika A, Katančić Z, Kovačić M, Kušić H, Hrnjak Murgić Z, Lončarić Božić A. Effect of Aging on Physicochemical Properties and Size Distribution of PET Microplastic: Influence on Adsorption of Diclofenac and Toxicity Assessment. TOXICS 2023; 11:615. [PMID: 37505580 PMCID: PMC10383551 DOI: 10.3390/toxics11070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) are detected in the water, sediments, as well as biota, mainly as a consequence of the degradation of plastic products/waste under environmental conditions. Due to their potentially harmful effects on ecosystems and organisms, MPs are regarded as emerging pollutants. The highly problematic aspect of MPs is their interaction with organic and inorganic pollutants; MPs can act as vectors for their further transport in the environment. The objective of this study was to investigate the effects of ageing on the changes in physicochemical properties and size distribution of polyethylene terephthalate (PET), as well as to investigate the adsorption capacity of pristine and aged PET MPs, using pharmaceutical diclofenac (DCF) as a model organic pollutant. An ecotoxicity assessment of such samples was performed. Characterization of the PET samples (bottles and films) was carried out to detect the thermooxidative aging effects. The influence of the temperature and MP dosage on the extent of adsorption of DCF was elucidated by employing an empirical modeling approach using the response surface methodology (RSM). Aquatic toxicity was investigated by examining the green microalgae Pseudokirchneriella subcapitata. It was found that the thermooxidative ageing process resulted in mild surface changes in PET MPs, which were reflected in changes in hydrophobicity, the amount of amorphous phase, and the particle size distribution. The fractions of the particle size distribution in the range 100-500 μm for aged PET are higher due to the increase in amorphous phase. The proposed mechanisms of interactions between DCF and PET MPs are hydrophobic and π-π interactions as well as hydrogen bonding. RSM revealed that the adsorption favors low temperatures and low dosages of MP. The combination of MPs and DCF exhibited higher toxicity than the individual components.
Collapse
Affiliation(s)
- Josipa Papac Zjačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Stefani Tonković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Anamarija Pulitika
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Zlata Hrnjak Murgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Ana Lončarić Božić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Zhou S, Ai J, Qiao J, Sun H, Jiang Y, Yin X. Effects of neonicotinoid insecticides on transport of non-degradable agricultural film microplastics. WATER RESEARCH 2023; 236:119939. [PMID: 37054611 DOI: 10.1016/j.watres.2023.119939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Mulch film microplastics (MPs) could act as a vector for agricultural chemicals due to their long-term presence in farmland environments. As a result, this study focuses on the adsorption mechanism of three neonicotinoids on two typical agricultural film MPs, polyethylene (PE) and polypropylene (PP), as well as the effects of neonicotinoids on the MPs transport in quartz sand saturated porous media. The findings revealed that the adsorption of neonicotinoids on PE and PP was a combination of physical and chemical processes, including hydrophobic, electrostatic and hydrogen bonding. Acidity and appropriate ionic strength (IS) were favorable conditions for neonicotinoid adsorption of on MPs. The results of column experiments showed that the presence of neonicotinoids, particularly at low concentrations (0.5 mmol L-1), could promote the transport of PE and PP in the column by improving the electrostatic interaction and hydrophilic repulsion of particles. The neonicotinoids would be adsorbed on MPs through hydrophobic action preferentially, whereas excessive neonicotinoids could cover the hydrophilic functional groups on the surface of MPs. Neonicotinoids reduced the response of PE and PP transport behavior to pH changes. 0.005 mol L-1 NaCl ameliorated the migration of MPs by increasing their stability. Because of its highest hydration ability and the bridging effect of Mg2+, Na+ had the most prominent transport promoting effect on PE and PP in MPs-neonicotinoid. This study shows that the increased environmental risk caused by the coexistence of microplastic particles and agricultural chemicals is unneglectable.
Collapse
Affiliation(s)
- Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiachang Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Yanji Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
19
|
Kuang B, Chen X, Zhan J, Zhou L, Zhong D, Wang T. Interaction behaviors of sulfamethoxazole and microplastics in marine condition: Focusing on the synergistic effects of salinity and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115009. [PMID: 37182302 DOI: 10.1016/j.ecoenv.2023.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Microplastics and antibiotics are two common pollutants in the ocean. However, due to changes of salinity and temperature in the ocean, their interaction are significantly different from that of fresh water, and the mechanism remains unclear. Here, the interactions of sulfamethoxazole (SMZ) and microplastics were studied at different temperatures and salinities. The saturation adsorption capacity of SMZ in polypropylene (PP), polyethylene (PE), styrene (PS), polyvinyl chloride (PVC), and synthetic resins (ABS) were highest at the temperature of 20 °C, with 0.118 ± 0.002 mg·g-1, 0.106 ± 0.004 mg·g-1, 0.083 ± 0.002 mg·g-1, 0.062 ± 0.007 mg·g-1 and 0.056 ± 0.003 mg·g-1, respectively. The effect of temperature reduction is more significant than temperature rise. The intraparticle diffusion model is appropriate to PP, when film diffusion model suited for PS. The salinity has a more significant effect than temperature on different microplastics, due to the electrostatic adsorption and iron exchange. With the increase in salinity from 0.05% to 3.5%, the adsorption capacity of microplastics on SMZ fell by 53.3 ± 5%, and there was no discernible difference of various microplastics. The hydrogen bond and π-π conjugation of microplastics play an important role in the adsorption of SMZ. These findings further deepen the understanding of the interaction between microplastics and antibiotics in the marine environment.
Collapse
Affiliation(s)
- Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom.
| | - Xuanhao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jianing Zhan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | | | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|