1
|
Villora-Picó JJ, Gil-Muñoz G, Sepúlveda-Escribano A, Pastor-Blas MM. The Facile Production of p-Chloroaniline Facilitated by an Efficient and Chemoselective Metal-Free N/S Co-Doped Carbon Catalyst. Int J Mol Sci 2024; 25:9603. [PMID: 39273549 PMCID: PMC11395487 DOI: 10.3390/ijms25179603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The catalytic hydrogenation of the toxic and harmful p-chloronitrobenzene to produce the value-added p-chloroaniline is an essential reaction for the sustainable chemical industry. Nevertheless, ensuring satisfactory control of its chemoselectivity is a great challenge. In this work, a N/S co-doped metal-free carbon catalyst has been fabricated by using cysteine as a source of C, N, and S. The presence of calcium citrate (porogen agent) in the mixture subjected to pyrolysis provided the carbon with porosity, which permitted us to overcome the issues associated with the loss of heteroatoms during an otherwise necessary activation thermal treatment. Full characterization was carried out and the catalytic performance of the metal-free carbon material was tested in the hydrogenation reaction of p-chloronitrobenzene to selectively produce p-chloroaniline. Full selectivity was obtained but conversion was highly dependent on the introduction of S due to the synergetic effect of S and N heteroatoms. The N/S co-doped carbon (CYSCIT) exhibits a mesoporous architecture which favors mass transfer and a higher doping level, with more exposed N and S doping atoms which act as catalytic sites for the hydrogenation of p-chloronitrobenzene, resulting in enhanced catalytic performance when compared to the N-doped carbon obtained from melamine and calcium citrate (MELCIT) used as a reference.
Collapse
Affiliation(s)
- Juan-José Villora-Picó
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Gema Gil-Muñoz
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Antonio Sepúlveda-Escribano
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - M Mercedes Pastor-Blas
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| |
Collapse
|
2
|
Aswini R, Jothimani K, Kannan K, Pothu R, Shanmugam P, Boddula R, Radwan AB, Periyasami G, Karthikeyan P, Al-Qahtani N. Carica Papaya leaf-infused metal oxide nanocomposite: a green approach towards water treatment and antibacterial applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:334. [PMID: 39060662 PMCID: PMC11281959 DOI: 10.1007/s10653-024-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
This study successfully synthesized ZnO-CuO nanocomposite using the hydrothermal method with Carica papaya leaf extract. The incorporation of the leaf extract significantly enhanced the nanocomposite properties, a novel approach in scientific research. Characterization techniques, including X-ray diffraction, Fourier Transmission Infrared spectroscopy, and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis, confirmed a cubic crystal structure with an average size of 22.37 nm. The Fourier Transmission Infrared spectrum revealed distinctive vibrations at 627, 661, and 751 cm-1 corresponding to ZnO-CuO nanocomposite corresponding to stretching and vibration modes. SEM images confirmed a cubic-like and irregular structure. The nanocomposite exhibited outstanding photocatalytic activity, degrading methylene blue dye by 96.73% within 120 min under visible light. Additionally, they showed significant antimicrobial activity, inhibiting Staphylococcus aureus (20 mm) and Klebsiella pneumonia (17 mm). The results highlight the efficiency of Carica papaya leaf-derived ZnO-CuO nanocomposite for environmental and health challenges.
Collapse
Affiliation(s)
- Rangayasami Aswini
- Department of Botany, Padmavani Arts and Science College for Women, Tamil Nadu, Salem, 636 011, India
| | - Kannupaiyan Jothimani
- Research Centre for Genetic Engineering BRIN, KST soekarno JI Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Karthik Kannan
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar.
| | | | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perumal Karthikeyan
- Department of Chemistry and Biochemistry, Ohio State University, 151 Woodruff Avenue, Columbus, OH, 170A CBEC43210, USA
| | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar.
- Central Laboratories Unit (CLU), Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
3
|
Villora-Picó JJ, Sepúlveda-Escribano A, Pastor-Blas MM. Design and Synthesis of N-Doped Carbons as Efficient Metal-Free Catalysts in the Hydrogenation of 1-Chloro-4-Nitrobenzene. Int J Mol Sci 2024; 25:2515. [PMID: 38473762 DOI: 10.3390/ijms25052515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Metal-free catalysts based on nitrogen-doped porous carbons were designed and synthesized from mixtures of melamine as nitrogen and carbon sources and calcium citrate as carbon source and porogen system. Considering the physicochemical and textural properties of the prepared carbons, a melamine/citrate ratio of 2:1 was selected to study the effect of the pyrolysis temperature. It was observed that a minimum pyrolysis temperature of 750 °C is required to obtain a carbonaceous structure. However, although there is a decrease in the nitrogen amount at higher pyrolysis temperatures, a gradual development of the porosity is produced from 750 °C to 850 °C. Above that temperature, a deterioration of the carbon porous structure is produced. All the prepared carbon materials, with no need for a further activation treatment, were active in the hydrogenation reaction of 1-chloro-4-nitrobenzene. A full degree of conversion was reached with the most active catalysts obtained from 2:1 melamine/citrate mixtures pyrolyzed at 850 °C and 900 °C, which exhibited a suitable compromise between the N-doping level and developed mesoporosity that facilitates the access of the reactants to the catalytic sites. What is more, all the materials showed 100% selectivity for the hydrogenation of the nitro group to form the corresponding chloro-aniline.
Collapse
Affiliation(s)
- Juan-José Villora-Picó
- Laboratory of Advanced Materials, Department of Inorganic Chemistry-University Institute of Materials of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Antonio Sepúlveda-Escribano
- Laboratory of Advanced Materials, Department of Inorganic Chemistry-University Institute of Materials of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - María-Mercedes Pastor-Blas
- Laboratory of Advanced Materials, Department of Inorganic Chemistry-University Institute of Materials of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| |
Collapse
|
4
|
Gao Y, Xiong K, Zhu B. Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts 2023. [DOI: 10.3390/catal13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
CO2 reduction to CO as raw material for conversion to chemicals and gasoline fuels via the reverse water–gas shift (RWGS) reaction is generally acknowledged to be a promising strategy that makes the CO2 utilization process more economical and efficient. Cu-based catalysts are low-cost and have high catalytic performance but have insufficient stability due to hardening at high temperatures. In this work, a series of Cu-based catalysts supported by MoOx were synthesized for noble metal-free RWGS reactions, and the effects of MoOx support on catalyst performance were investigated. The results show that the introduction of MoOx can effectively improve the catalytic performance of RWGS reactions. The obtained Cu/MoOx (1:1) catalyst displays excellent activity with 35.85% CO2 conversion and 99% selectivity for CO at 400 °C. A combination of XRD, XPS, and HRTEM characterization results demonstrate that MoOx support enhances the metal-oxide interactions with Cu through electronic modification and geometric coverage, thus obtaining highly dispersed copper and more Cu-MoOx interfaces as well as more corresponding oxygen vacancies.
Collapse
|
5
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|
6
|
Soto Beobide A, Moschovi AM, Mathioudakis GN, Kourtelesis M, Lada ZG, Andrikopoulos KS, Sygellou L, Dracopoulos V, Yakoumis I, Voyiatzis GA. High Catalytic Efficiency of a Nanosized Copper-Based Catalyst for Automotives: A Physicochemical Characterization. Molecules 2022; 27:7402. [PMID: 36364229 PMCID: PMC9657973 DOI: 10.3390/molecules27217402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/26/2024] Open
Abstract
The global trend in restrictions on pollutant emissions requires the use of catalytic converters in the automotive industry. Noble metals belonging to the platinum group metals (PGMs, platinum, palladium, and rhodium) are currently used for autocatalysts. However, recent efforts focus on the development of new catalytic converters that combine high activity and reduced cost, attracting the interest of the automotive industry. Among them, the partial substitution of PGMs by abundant non-PGMs (transition metals such as copper) seems to be a promising alternative. The PROMETHEUS catalyst (PROM100) is a polymetallic nanosized copper-based catalyst for automotives prepared by a wet impregnation method, using as a carrier an inorganic mixed oxide (CeO2-ZrO2) exhibiting elevated oxygen storage capacity. On the other hand, catalyst deactivation or ageing is defined as the process in which the structure and state of the catalyst change, leading to the loss of the catalyst's active sites with a subsequent decrease in the catalyst's performance, significantly affecting the emissions of the catalyst. The main scope of this research is to investigate in detail the effect of ageing on this low-cost, effective catalyst. To that end, a detailed characterization has been performed with a train of methods, such as SEM, Raman, XRD, XRF, BET and XPS, to both ceria-zirconia mixed inorganic oxide support (CZ-fresh and -aged) and to the copper-based catalyst (PROM100-fresh and -aged), revealing the impact of ageing on catalytic efficiency. It was found that ageing affects the Ce-Zr mixed oxide structure by initiating the formation of distinct ZrO2 and CeO2 structures monitored by Raman and XRD. In addition, it crucially affects the morphology of the sample by reducing the surface area by a factor of nearly two orders of magnitude and increasing particle size as indicated by BET and SEM due to sintering. Finally, the Pd concentration was found to be considerably reduced from the material's surface as suggested by XPS data. The above-mentioned alterations observed after ageing increased the light-off temperatures by more than 175 °C, compared to the fresh sample, without affecting the overall efficiency of the catalyst for CO and CH4 oxidation reactions. Metal particle and CeZr carrier sintering, washcoat loss as well as partial metal encapsulation by Cu and/or CeZrO4 are identified as the main causes for the deactivation after hydrothermal ageing.
Collapse
Affiliation(s)
- Amaia Soto Beobide
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - Georgios N. Mathioudakis
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - Zoi G. Lada
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | - Konstantinos S. Andrikopoulos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
- Department of Physics, University of Patras, 26504 Patras, Greece
| | - Labrini Sygellou
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | - Vassilios Dracopoulos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - George A. Voyiatzis
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| |
Collapse
|