1
|
Sallam OI, Rammah YS, Nabil IM, El-Seidy AMA. Enhanced optical and structural traits of irradiated lead borate glasses via Ce 3+ and Dy 3+ ions with studying Radiation shielding performance. Sci Rep 2024; 14:24478. [PMID: 39424847 PMCID: PMC11489820 DOI: 10.1038/s41598-024-73892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Lead borate glass is the best radiation shielding glass when lead is in high concentration. However, it has low transparency after radiation exposure. Radiation decreases transparency due to chemical and physical changes in the glass matrix, such as creating or healing defects in the glass network. The addition of rare earth elements like cerium and dysprosium oxides to lead borate glasses can improve their transparency and durability as radiation shielding barriers. The newly manufactured glasses' optical absorption, structural, and radiation shielding properties were measured. The optical characteristics of the generated samples were examined to determine the effect of the cerium/dysprosium ratio on the structural alterations, specifically in the presence of bridging oxygen (BO) and non-bridging oxygen (NBO). Incorporating Ce3+ results in peaks at 195 nm for borate units, 225 nm for Ce3+, and a broadened peak at 393 nm due to overlapping peaks for Ce3+ and Ce4+ in the UV region. By adding Dy, multiple peaks are observed at 825, 902, 1095, 1275, and 1684 nm, corresponding to the transition from 6H15/2 ground state to 6F5/2, 6F7/2, 6F9/2, 6F11/2, and 6H11/2. The samples were also tested before and after exposure to gamma irradiation from a 60Co source at a dose of 75 kGy to assess their stability against radiation. The energy gap value during irradiation shows decreased non-bridging oxygen. The energy gap difference before and after irradiation for the M4 sample shows higher NBO to BO conversion, reducing radiation damage and improving structural stability. Furthermore, X-ray photoelectron spectroscopy was utilized to get insight into the coordination chemistry of the created glass samples. The half-value layer (HVL), radiation protection efficiency (RPE), neutron removal cross-section (FRNCS), mean free path (MFP), mass attenuation coefficients (MAC), and effective atomic numbers (Zef) of the glassy structure were calculated theoretically to assess its radiation shielding qualities. The linear attenuation coefficient order for the prepared samples was M1 > M2 > M3 > M4. The FRNCS values were 0.090, 0.083, 0.081, and 0.079 cm-1 for samples M1, M2, M3, and M4, respectively.
Collapse
Affiliation(s)
- O I Sallam
- Glass Lab, Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Y S Rammah
- Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, 32511, Egypt
- Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, Alexandria, 21648, Egypt
| | - Islam M Nabil
- Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ahmed M A El-Seidy
- Inorganic Chemistry Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, El-borough St., P.O. 12622, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Han Y, Zhang H, Yang R, Yu X, Marfavi Z, Lv Q, Zhang G, Sun K, Yuan C, Tao K. Ba 2+-doping introduced piezoelectricity and efficient Ultrasound-Triggered bactericidal activity of brookite TiO 2 nanorods. J Colloid Interface Sci 2024; 670:742-750. [PMID: 38788441 DOI: 10.1016/j.jcis.2024.05.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Exploring highly efficient ultrasound-triggered catalysts is pivotal for various areas. Herein, we presented that Ba2+ doped brookite TiO2 nanorod (TiO2: Ba) with polarization-induced charge separation is a candidate. The replacement of Ba2+ for Ti4+ not only induced significant lattice distortion to induce polarization but also created oxygen vacancy defects for facilitating the charge separation, leading to high-efficiency reactive oxygen species (ROS) evolution in the piezo-catalytic processes. Furthermore, the piezocatalytic ability to degrade dye wastewater demonstrates a rate constant of 0.172 min-1 and achieves a 100 % antibacterial rate at a low dose for eliminating E. coli. This study advances that doping can induce piezoelectricity and reveals that lattice distortion-induced polarization and vacancy defects engineering can improve ROS production, which might impact applications such as water disinfection and sonodynamic therapy.
Collapse
Affiliation(s)
- Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinyue Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
3
|
Sharma M, Sajwan D, Gouda A, Sharma A, Krishnan V. Recent progress in defect-engineered metal oxides for photocatalytic environmental remediation. Photochem Photobiol 2024; 100:830-896. [PMID: 38757336 DOI: 10.1111/php.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
4
|
Ren Z, Li Y, Ren Q, Zhang X, Fan X, Liu X, Fan J, Shen S, Tang Z, Xue Y. Unveiling the Role of Sulfur Vacancies in Enhanced Photocatalytic Activity of Hybrids Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1009. [PMID: 38921884 PMCID: PMC11207092 DOI: 10.3390/nano14121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis represents a sustainable strategy for addressing energy shortages and global warming. The main challenges in the photocatalytic process include limited light absorption, rapid recombination of photo-induced carriers, and poor surface catalytic activity for reactant molecules. Defect engineering in photocatalysts has been proven to be an efficient approach for improving solar-to-chemical energy conversion. Sulfur vacancies can adjust the electron structure, act as electron reservoirs, and provide abundant adsorption and activate sites, leading to enhanced photocatalytic activity. In this work, we aim to elucidate the role of sulfur vacancies in photocatalytic reactions and provide valuable insights for engineering high-efficiency photocatalysts with abundant sulfur vacancies in the future. First, we delve into the fundamental understanding of photocatalysis. Subsequently, various strategies for fabricating sulfur vacancies in photocatalysts are summarized, along with the corresponding characterization techniques. More importantly, the enhanced photocatalytic mechanism, focusing on three key factors, including electron structure, charge transfer, and the surface catalytic reaction, is discussed in detail. Finally, the future opportunities and challenges in sulfur vacancy engineering for photocatalysis are identified.
Collapse
Affiliation(s)
- Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Yang Li
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Qiuyu Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Xiaojie Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xiaofan Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Shuling Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Zhihong Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| |
Collapse
|
5
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
6
|
Wang W, Wu Y, Chen L, Xu C, Liu C, Li C. Fabrication of Z-Type TiN@(A,R)TiO 2 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1984. [PMID: 37446500 DOI: 10.3390/nano13131984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Plasmonic effect-enhanced Z-type heterojunction photocatalysts comprise a promising solution to the two fundamental problems of current TiO2-based photocatalysis concerning low-charge carrier separation efficiency and low utilization of solar illumination. A plasmonic effect-enhanced TiN@anatase-TiO2/rutile-TiO2 Z-type heterojunction photocatalyst with the strong interface of the N-O chemical bond was synthesized by hydrothermal oxidation of TiN. The prepared photocatalyst shows desirable visible light absorption and good visible-light-photocatalytic activity. The enhancement in photocatalytic activities contribute to the plasma resonance effect of TiN, the N-O bond-connected charge transfer channel at the TiO2/TiN heterointerface, and the synergistically Z-type charge transfer pathway between the anatase TiO2 (A-TiO2) and rutile TiO2 (R-TiO2). The optimization study shows that the catalyst with a weight ratio of A-TiO2/R-TiO2/TiN of approximately 15:1:1 achieved the best visible light photodegradation activity. This work demonstrates the effectiveness of fabricating plasmonic effect-enhanced Z-type heterostructure semiconductor photocatalysts with enhanced visible-light-photocatalytic activities.
Collapse
Affiliation(s)
- Wanting Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuanting Wu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Long Chen
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chenggang Xu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Changqing Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chengxin Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|