1
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
2
|
Akakuru OU, Xing J, Huang S, Iqbal ZM, Bryant S, Wu A, Trifkovic M. Leveraging Non-Radiative Transitions in Asphaltenes-Derived Carbon Dots for Cancer Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404591. [PMID: 39210655 DOI: 10.1002/smll.202404591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Cancer photothermal therapy leverages the capability of photothermal agents to convert light to heat for cancer cell ablation and necrosis. However, most conventional photothermal agents (Au, CuS, Pd, mesoporous silica nanoparticles, and indocyanine green dye) either face scalability challenges or photobleached upon prolonged irradiation which jeopardizes practical applications. Here, asphaltenes-derived carbon dots (ACDs, 5 nm) are rationally engineered as a low-cost and photostable photothermal agent with negligible in vivo cytotoxicity. The abundant water-solvating functional groups on the ACDs surface endows them with excellent water re-dispersibility that outperforms those of most commercial nanomaterials. Photothermal therapeutic property of the ACDs is mechanistically described by non-radiative transitions of excited electrons at 808 nm via internal conversions and vibrational relaxations. Consequently, the ACDs offer cancer photothermal therapy in mice within 15 days post-exposure to one-time near infrared irradiation. This pioneering study showcases the first utilization of asphaltenes-based materials for cancer therapy and is expected to arouse further utilization of such materials in various cancer theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zubair M Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Steven Bryant
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
3
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
4
|
Bae G, Cho H, Hong BH. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). NANOTECHNOLOGY 2024; 35:372001. [PMID: 38853586 DOI: 10.1088/1361-6528/ad55d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Gaeun Bae
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Rasheed PA, Ankitha M, Pillai VK, Alwarappan S. Graphene quantum dots for biosensing and bioimaging. RSC Adv 2024; 14:16001-16023. [PMID: 38765479 PMCID: PMC11099990 DOI: 10.1039/d4ra01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Graphene Quantum Dots (GQDs) are low dimensional carbon based materials with interesting physical, chemical and biological properties that enable their applications in numerous fields. GQDs possess unique electronic structures that impart special functional attributes such as tunable optical/electrical properties in addition to heteroatom-doping and more importantly a propensity for surface functionalization for applications in biosensing and bioimaging. Herein, we review the recent advancements in the top-down and bottom-up approaches for the synthesis of GQDs. Following this, we present a detailed review of the various surface properties of GQDs and their applications in bioimaging and biosensing. GQDs have been used for fluorescence imaging for visualizing tumours and monitoring the therapeutic responses in addition to magnetic resonance imaging applications. Similarly, the photoluminescence based biosensing applications of GQDs for the detection of hydrogen peroxide, micro RNA, DNA, horse radish peroxidase, heavy metal ions, negatively charged ions, cardiac troponin, etc. are discussed in this review. Finally, we conclude the review with a discussion on future prospects.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Rami Reddy Nagar Mangalam Tirupati AP 517507 India
| | - Subbiah Alwarappan
- Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| |
Collapse
|
6
|
Valimukhametova AR, Fannon O, Topkiran UC, Dorsky A, Sottile O, Gonzalez-Rodriguez R, Coffer J, Naumov AV. Five near-infrared-emissive graphene quantum dots for multiplex bioimaging. 2D MATERIALS 2024; 11:025009. [PMID: 39149578 PMCID: PMC11326670 DOI: 10.1088/2053-1583/ad1c6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Due to high tissue penetration depth and low autofluorescence backgrounds, near-infrared (NIR) fluorescence imaging has recently become an advantageous diagnostic technique used in a variety of fields. However, most of the NIR fluorophores do not have therapeutic delivery capabilities, exhibit low photostabilities, and raise toxicity concerns. To address these issues, we developed and tested five types of biocompatible graphene quantum dots (GQDs) exhibiting spectrally-separated fluorescence in the NIR range of 928-1053 nm with NIR excitation. Their optical properties in the NIR are attributed to either rare-earth metal dopants (Ho-NGQDs, Yb-NGQDs, Nd-NGQDs) or defect-states (nitrogen doped GQDS (NGQDs), reduced graphene oxides) as verified by Hartree-Fock calculations. Moderate up to 1.34% quantum yields of these GQDs are well-compensated by their remarkable >4 h photostability. At the biocompatible concentrations of up to 0.5-2 mg ml-1 GQDs successfully internalize into HEK-293 cells and enable in vitro imaging in the visible and NIR. Tested all together in HEK-293 cells five GQD types enable simultaneous multiplex imaging in the NIR-I and NIR-II shown for the first time in this work for GQD platforms. Substantial photostability, spectrally-separated NIR emission, and high biocompatibility of five GQD types developed here suggest their promising potential in multianalyte testing and multiwavelength bioimaging of combination therapies.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Ugur C Topkiran
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | | | - Jeffery Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, TCU Box 298860, Fort Worth, TX 76129, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| |
Collapse
|
7
|
Domena JB, Ferreira BCLB, Chen J, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. The art of simplicity: Water-soluble porphyrin-like carbon dots self-assemble into mesmerizing red glow. Colloids Surf B Biointerfaces 2024; 234:113719. [PMID: 38181692 DOI: 10.1016/j.colsurfb.2023.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
In this new study, we present an intriguing development in the field of theranostics: the simplistic self-assembly of red-emissive amphiphilic porphyrin-like carbon dots (P-CDs). By harnessing their exceptional photophysical properties, we have revealed a strong candidate as the ideal photosensitizer (PS) for applications, particularly in the realm of imaging. Spanning a remarkable size average between 1-4 nm, these particles exhibit both highly stable and unparalleled emission characteristics between 650 and 715 nm in water in comparison to current carbon dots (CDs) available. Lastly, these CDs were fairly non-toxic when tested against normal human cell lines as well as were found to have favorable imaging capabilities in zebrafish embryo.
Collapse
Affiliation(s)
- Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - M Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - A Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA; Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Regina M Graham
- Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
8
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
9
|
Iannazzo D, Celesti C, Giofrè SV, Ettari R, Bitto A. Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2380. [PMID: 37630966 PMCID: PMC10459055 DOI: 10.3390/nano13162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Consuelo Celesti
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
10
|
Bhaloo A, Nguyen S, Lee BH, Valimukhametova A, Gonzalez-Rodriguez R, Sottile O, Dorsky A, Naumov AV. Doped Graphene Quantum Dots as Biocompatible Radical Scavenging Agents. Antioxidants (Basel) 2023; 12:1536. [PMID: 37627531 PMCID: PMC10451549 DOI: 10.3390/antiox12081536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging. To design an optimal nanoscale ROS scavenging agent, we have synthesized ten types of biocompatible graphene quantum dots (GQDs) augmented with various metal dopants. The radical scavenging abilities of these novel metal-doped GQD structures were, for the first time, assessed via the DPPH, KMnO4, and RHB (Rhodamine B protectant) assays. While all metal-doped GQDs consistently demonstrate antioxidant properties higher than the undoped cores, aluminum-doped GQDs exhibit 60-95% radical scavenging ability of ascorbic acid positive control. Tm-doped GQDs match the radical scavenging properties of ascorbic acid in the KMnO4 assay. All doped GQD structures possess fluorescence imaging capabilities that enable their tracking in vitro, ensuring their successful cellular internalization. Given such multifunctionality, biocompatible doped GQD antioxidants can become prospective candidates for multimodal therapeutics, including the reduction of ROS with concomitant imaging and therapeutic delivery to cancer tumors.
Collapse
Affiliation(s)
- Adam Bhaloo
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Alina Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | | | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Anton V. Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| |
Collapse
|
11
|
Wang S, Lan M, Peng H, Zhang J. Editorial for Special Issue: "Supramolecular Nanomaterials for Biomedical Application". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1054. [PMID: 36985949 PMCID: PMC10053515 DOI: 10.3390/nano13061054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Since the discovery of supramolecular chemistry in 1987.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Minhuan Lan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huiqing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|