1
|
de Jesus Barros M, Mathias SL, Lopes HS, de Assumpção Pereira da Silva M, Pereira RV, de Menezes AJ. Chemical Functionalization of Cellulose Nanofibrils with 2-Aminoethyl Hydrogen Sulfate. ACS OMEGA 2025; 10:1122-1130. [PMID: 39829446 PMCID: PMC11740635 DOI: 10.1021/acsomega.4c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
The chemical functionalization of cellulose nanofibrils (CNFs) was carried out using 2-aminoethyl hydrogen sulfate as the reagent under various experimental conditions via a bimolecular nucleophilic substitution (SN2) reaction. The functionalized CNFs were characterized by Fourier transform infrared spectroscopy-attenuated total reflectance. The results indicate that the chemical modification was successful, as evidenced by the presence of a band at 1540 cm-1, corresponding to the N-H bond of the amine group. Elemental analysis revealed a nitrogen content of 0.45%, and the degree of substitution was calculated to be 0.053 under the optimal reaction conditions. Atomic force microscopy analysis showed no significant changes in the morphology of the CNFs. X-ray diffraction patterns demonstrated a decrease in the crystallinity index, from 80.8% to 71.8%. Thermogravimetric analysis showed a slight reduction in thermal stability (onset temperature decreased from 229.4 to 227.5 °C) for the modified CNFs compared to the unmodified samples. Differential scanning calorimetry results indicated no significant effect of the modification on thermal behavior, with both modified and unmodified samples displaying similar thermal profiles, although the modified samples exhibited slightly higher thermal stability.
Collapse
Affiliation(s)
| | - Samir Leite Mathias
- Graduate
Program in Materials Science, Federal University
of São Carlos—UFSCar, 18052-780 Sorocaba, São
Paulo, Brazil
| | - Henrique Solowej
Medeiros Lopes
- Graduate
Program in Materials Science, Federal University
of São Carlos—UFSCar, 18052-780 Sorocaba, São
Paulo, Brazil
- Technological
College of Sorocaba—Fatec, 18013-280 Sorocaba, São
Paulo, Brazil
| | - Marcelo de Assumpção Pereira da Silva
- Institute
of Physics of São Carlos, University
of São Paulo—USP, 13566-590 São Carlos, São Paulo, Brazil
- Central
Paulista University Center—UNICEP, 13563-470 São Carlos, São Paulo, Brazil
| | - Robson Valentim Pereira
- Multidisciplinary
Institute of Chemistry, Federal University
of Rio de Janeiro—UFRJ, 27930-560 Macaé, Rio de Janeiro, Brazil
| | - Aparecido Junior de Menezes
- Graduate
Program in Materials Science, Federal University
of São Carlos—UFSCar, 18052-780 Sorocaba, São
Paulo, Brazil
| |
Collapse
|
2
|
Mbisana M, Keroletswe N, Nareetsile F, Mogopodi D, Chibua I. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment. CELLULOSE 2024; 31:10651-10678. [DOI: 10.1007/s10570-024-06268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.
Collapse
|
3
|
Arivendan A, Chen X, Zhang YF, Gao W. Recent advances in nanocellulose pretreatment routes, developments, applications and future prospects: A state-of-the-art review. Int J Biol Macromol 2024; 281:135925. [PMID: 39414533 DOI: 10.1016/j.ijbiomac.2024.135925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
In a quest to find eco-friendly materials from renewable resources, researchers have focused on cellulose materials, which is the primary reinforcing component of plant cell walls. Nanocellulose is at the forefront of research due to its wide range of sources, biocompatibility, large surface area and tunable surface chemistry. It has gained considerable attention in various industries as a nano-reinforcement for polymer matrices due to its hierarchical structure (medical and healthcare, oil and gas, packaging, paper, board, composites, printed and flexible electronics, 3D printing, aerogels). In this paper, we have reviewed the recent advances in nanocellulose production, physical properties, structural characterization, surface modification strategies, pretreatment methods, applications, limitations and future directions. This review emphasizes the quantification of nanocellulose extraction and applications of the most prevalent areas of nanocellulose research. In view of its increasing and broader applications, the demand for nanocellulose is expected to increase in the future.
Collapse
Affiliation(s)
- Ajithram Arivendan
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China
| | - Xiaoqi Chen
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China.
| | - Yuan-Fang Zhang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China.
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road, Guangzhou 510640, Guangdong, China
| |
Collapse
|
4
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
5
|
Lee J, Lee S, Lim JW, Byun I, Jang KJ, Kim JW, Chung JH, Kim J, Seonwoo H. Development of Plum Seed-Derived Carboxymethylcellulose Bioink for 3D Bioprinting. Polymers (Basel) 2023; 15:4473. [PMID: 38231895 PMCID: PMC10708124 DOI: 10.3390/polym15234473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional bioprinting represents an innovative platform for fabricating intricate, three-dimensional (3D) tissue structures that closely resemble natural tissues. The development of hybrid bioinks is an actionable strategy for integrating desirable characteristics of components. In this study, cellulose recovered from plum seed was processed to synthesize carboxymethyl cellulose (CMC) for 3D bioprinting. The plum seeds were initially subjected to α-cellulose recovery, followed by the synthesis and characterization of plum seed-derived carboxymethyl cellulose (PCMC). Then, hybrid bioinks composed of PCMC and sodium alginate were fabricated, and their suitability for extrusion-based bioprinting was explored. The PCMC bioinks exhibit a remarkable shear-thinning property, enabling effortless extrusion through the nozzle and maintaining excellent initial shape fidelity. This bioink was then used to print muscle-mimetic 3D structures containing C2C12 cells. Subsequently, the cytotoxicity of PCMC was evaluated at different concentrations to determine the maximum acceptable concentration. As a result, cytotoxicity was not observed in hydrogels containing a suitable concentration of PCMC. Cell viability was also evaluated after printing PCMC-containing bioinks, and it was observed that the bioprinting process caused minimal damage to the cells. This suggests that PCMC/alginate hybrid bioink can be used as a very attractive material for bioprinting applications.
Collapse
Affiliation(s)
- Juo Lee
- Department of Animal Science & Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea;
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sungmin Lee
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Human Harmonized Robotics, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Woon Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Iksong Byun
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Agricultural Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
6
|
Chumchoochart W, Chandet N, Saenjum C, Tinoi J. Important Role and Properties of Granular Nanocellulose Particles in an In Vitro Simulated Gastrointestinal System and in Lipid Digestibility and Permeability. Biomolecules 2023; 13:1479. [PMID: 37892161 PMCID: PMC10604528 DOI: 10.3390/biom13101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
This research evaluated the role and feasibility of the granular nanocellulose particles (GNC) from sugarcane bagasse obtained from enzymatic hydrolysis in reducing lipid digestibility and permeability in an in vitro simulated gastrointestinal (GI) system. GNC concentration (0.02%, w/v) had significantly affected the released free fatty acids (FFA), with a reduction of approximately 20%. Pickering emulsion of a GNC and olive oil simulation mixture revealed higher oil droplet size distribution and stability in the initial stage than the vortexed mixture formation. The difference in particle size distribution and zeta potential of the ingested GNC suspension and GNC-olive oil emulsion were displayed during the in vitro gastrointestinal simulation. GNC particles interacted and distributed surrounding the oil droplet, leading to interfacial emulsion. The GNC concentration (0.01-0.10%, w/v) showed low toxicity on HIEC-6 cells, ranging from 80.0 to 99% of cell viability. The release of FFA containing the ingested GNC suspension and GNC-olive oil emulsion had about a 30% reduction compared to that without the GNC digestion solution. The FFA and triglyceride permeability through the HIEC-6 intestinal epithelium monolayer were deceased in the digesta containing the ingested GNC and emulsion. This work indicated that GNC represented a significantly critical role and properties in the GI tract and reduced lipid digestion and absorption. This GNC could be utilized as an alternative food additive or supplement in fatty food for weight control due to their inhibition of lipid digestibility and assimilation.
Collapse
Affiliation(s)
- Warathorn Chumchoochart
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nopakarn Chandet
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jidapha Tinoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Shavyrkina NA, Budaeva VV, Skiba EA, Gismatulina YA, Sakovich GV. Review of Current Prospects for Using Miscanthus-Based Polymers. Polymers (Basel) 2023; 15:3097. [PMID: 37514486 PMCID: PMC10383910 DOI: 10.3390/polym15143097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Carbon neutrality is a requisite for industrial development in modern times. In this paper, we review information on possible applications of polymers from the energy crop Miscanthus in the global industries, and we highlight the life cycle aspects of Miscanthus in detail. We discuss the benefits of Miscanthus cultivation on unoccupied marginal lands as well as the rationale for the capabilities of Miscanthus regarding both soil carbon storage and soil remediation. We also discuss key trends in the processing of Miscanthus biopolymers for applications such as a fuel resources, as part of composite materials, and as feedstock for fractionation in order to extract cellulose, lignin, and other valuable chemicals (hydroxymethylfurfural, furfural, phenols) for the subsequent chemical synthesis of a variety of products. The potentialities of the biotechnological transformation of the Miscanthus biomass into carbohydrate nutrient media and then into the final products of microbiological synthesis are also examined herein.
Collapse
Affiliation(s)
- Nadezhda A Shavyrkina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
- Department of Biotechnology, Biysk Technological Institute, Polzunov Altai State Technical University, Biysk 659305, Russia
| | - Vera V Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Ekaterina A Skiba
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Yulia A Gismatulina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Gennady V Sakovich
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| |
Collapse
|
8
|
Sofiah AGN, Pasupuleti J, Samykano M, Kadirgama K, Koh SP, Tiong SK, Pandey AK, Yaw CT, Natarajan SK. Harnessing Nature's Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymers (Basel) 2023; 15:3044. [PMID: 37514434 PMCID: PMC10385464 DOI: 10.3390/polym15143044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Primary material supply is the heart of engineering and sciences. The depletion of natural resources and an increase in the human population by a billion in 13 to 15 years pose a critical concern regarding the sustainability of these materials; therefore, functionalizing renewable materials, such as nanocellulose, by possibly exploiting their properties for various practical applications, has been undertaken worldwide. Nanocellulose has emerged as a dominant green natural material with attractive and tailorable physicochemical properties, is renewable and sustainable, and shows biocompatibility and tunable surface properties. Nanocellulose is derived from cellulose, the most abundant polymer in nature with the remarkable properties of nanomaterials. This article provides a comprehensive overview of the methods used for nanocellulose preparation, structure-property and structure-property correlations, and the application of nanocellulose and its nanocomposite materials. This article differentiates the classification of nanocellulose, provides a brief account of the production methods that have been developed for isolating nanocellulose, highlights a range of unique properties of nanocellulose that have been extracted from different kinds of experiments and studies, and elaborates on nanocellulose potential applications in various areas. The present review is anticipated to provide the readers with the progress and knowledge related to nanocellulose. Pushing the boundaries of nanocellulose further into cutting-edge applications will be of particular interest in the future, especially as cost-effective commercial sources of nanocellulose continue to emerge.
Collapse
Affiliation(s)
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Mahendran Samykano
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Kumaran Kadirgama
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Siaw Paw Koh
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sieh Kieh Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Adarsh Kumar Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, No. 5, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
- Center for Transdiciplinary Research (CFTR), Saveetha University, Chennai 602105, India
| | - Chong Tak Yaw
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sendhil Kumar Natarajan
- Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, University of Puducherry, Karaikal 609609, India
| |
Collapse
|