1
|
Gharibnavaz M, Arash V, Pournajaf A, Najafi F, Rahmati Kamel M, Seyedmajidi S. Study on the Antibacterial Properties and Optical Characteristics of Clear Orthodontic Aligners Coated With Zinc Oxide and Magnesium Oxide Nanoparticles. Orthod Craniofac Res 2025. [PMID: 39853925 DOI: 10.1111/ocr.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
OBJECTIVES This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles. MATERIALS AND METHODS In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM). Colour changes and translucency were measured using a spectrophotometer, and the antimicrobial and antibiofilm properties were evaluated against Streptococcus mutans and Lactobacillus species. Statistical analysis was conducted using SPSS, with significance set at p < 0.05. RESULTS Significant statistical differences were found in the colour changes between the groups (p < 0.001), with the greatest change in MgO-coated aligners (0.94 ± 0.09), followed by ZnO + MgO (0.75 ± 0.05) and ZnO (0.5 ± 0.09). ZnO-coated aligners exhibited the highest translucency (47.6 ± 0.44) compared to MgO (45.07 ± 0.74) and ZnO + MgO (45.76 ± 0.7) (p = 0.002 and p = 0.026, respectively). Nanoparticle-coated aligners showed significantly reduced bacterial growth (p < 0.05). The ZnO + MgO combination demonstrated superior antibacterial effects compared to individual coatings. Nanoparticles remained stable after 24-h agitation in artificial saliva and brushing, maintaining 60%-65% stability. CONCLUSION The aligners coated with ZnO nanoparticles exhibited the least colour change and the highest translucency compared to those coated with MgO nanoparticles and the ZnO + MgO combination. The highest antibacterial properties were observed in the aligners coated with a combination of ZnO and MgO nanoparticles.
Collapse
Affiliation(s)
- Mahnaz Gharibnavaz
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Valiollah Arash
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, I.R.Iran
| | - Manouchehr Rahmati Kamel
- Oral Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Seyedali Seyedmajidi
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| |
Collapse
|
2
|
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B, Yu T. Dynamics of the oral microbiome during orthodontic treatment and antimicrobial advances for orthodontic appliances. iScience 2024; 27:111458. [PMID: 39720528 PMCID: PMC11667053 DOI: 10.1016/j.isci.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases. Undoubtedly, increased difficulty in oral hygiene maintenance and oral microbial disturbances are the main factors in developing these adverse effects. The present article briefly illustrates the characteristics of different ecological niches (including saliva, soft tissue surfaces of the oral mucosa, and hard tissue surfaces of the teeth) inhabited by oral microorganisms. According to the investigations conducted since 2014, we comprehensively elucidate the alterations of the oral microbiome in saliva, dental plaque, and other ecological niches after the introduction of orthodontic appliances. Finally, we provide a detailed review of recent advances in the antimicrobial properties of different orthodontic appliances. This article will provide researchers with a profound understanding of the underlying mechanisms of the effects of orthodontic appliances on human health and provide direction for further research on the antimicrobial properties of orthodontic appliances.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Yuntao Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| |
Collapse
|
3
|
Ahuja D, Singh AK, Batra P. Antibacterial efficacy of nanoparticles on orthodontic materials-A systematic review and meta-analysis. Int Orthod 2024; 23:100955. [PMID: 39591841 DOI: 10.1016/j.ortho.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
AIM This study aims to evaluate the efficacy of coated nanoparticles within orthodontic appliances as a novel strategy to enhance their antibacterial properties. MATERIAL AND METHODS A systematic search for relevant articles published between 2013 and March 2024 was conducted across electronic databases including PubMed, Scopus, Web of Science, and EBSCOhost. Studies meeting pre-defined eligibility criteria were included and assessed for methodological quality. Data on the antibacterial activity of coated nanoparticles on orthodontic appliances was extracted from included studies. RESULTS A range of antimicrobial agents, including metallic nanoparticles (silver, titanium dioxide, silver-platinum alloy, zinc oxide, copper oxide), and others like chitosan, quaternary ammonium-modified gold nanoclusters, titanium nitride doped with calcium phosphate, and graphene oxide, have been explored for incorporation into orthodontic materials. Studies have shown a significant boost in the antibacterial capacity of these materials compared to controls, suggesting promise for improved oral hygiene during orthodontic treatment. CONCLUSION It can be concluded that incorporating nanoparticles into orthodontic appliances holds promise for enhancing their antibacterial properties. However, the studies displayed significant heterogeneity therefore, further research with standardized protocols for factors like nanoparticle size, concentration, and incorporation techniques across various orthodontic materials is crucial to guide future clinical applications. PROSPERO REGISTRATION CRD42024521326.
Collapse
Affiliation(s)
- Dhruv Ahuja
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| | - Ashish Kumar Singh
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India.
| | - Puneet Batra
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| |
Collapse
|
4
|
Moradinezhad M, Abbasi Montazeri E, Hashemi Ashtiani A, Pourlotfi R, Rakhshan V. Biofilm formation of Streptococcus mutans, Streptococcus sanguinis, Staphylococcus epidermidis, Staphylococcus aureus, Lactobacillus casei, and Candida Albicans on 5 thermoform and 3D printed orthodontic clear aligner and retainer materials at 3 time points: an in vitro study. BMC Oral Health 2024; 24:1107. [PMID: 39294648 PMCID: PMC11412017 DOI: 10.1186/s12903-024-04893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Orthodontic clear aligners and retainers have numerous advantages that is making them ever increasingly popular. However, they might, similar to any other oral appliance, contribute to biofilm formation and finally dental caries or white spot lesions or gingival inflammations. The literature on biofilm formation on orthodontic clear appliances is very scarce and limited to a few microorganisms and materials. Therefore, this experimental study evaluated the biofilm formation on 5 thermoformed and 3D printed CAD/CAM orthodontic retainers in 3 intervals. METHODS In this in vitro study, 345 specimens (270 test discs and 45 negative controls) were created from fabricated retainers. Retainers included a 3D printed CAD/CAM material (Detax) and four thermoformed retainers [Erkodent (polyethylene terephthalate glycol [PETG]); EasyVac (polyethylene); DB (polyester based on terephthalic acid); and Clear Tech]. They were all 1 mm thick, and all completely fabricated, i.e., heated or printed. The discs were placed in 96-well plates. Microorganisms were cultured on 270 discs for 24 h (90 discs), 72 h (90 other discs), and 5 days or 120 h (90 other discs). Biofilm formation of the strains and negative controls was measured using the microtiter plate assay by ELISA reading. The microbes' ability to produce biofilm was categorized based on the comparison of average optical density (OD) of tests versus a cut-off point OD (ODc) calculated as the average of the OD of corresponding negative controls plus 3× its standard deviation: non-biofilm former [OD ≤ ODc], weak biofilm former [ODc < OD ≤ (2 × ODc)], moderate biofilm former [(2 × ODc) < OD ≤ (4 × ODc)], and strong biofilm former [(4 × ODc) < OD]. These were also converted to ranked scores between zero (no biofilm) and 3. The difference between ODs with control ODs were calculated. These were analyzed using 3-way ANOVA, 2-way ANOVA, and Tukey tests (α = 0.05, α = 0.008). RESULTS The 3-way ANOVA showed that the overall difference among the ΔODs of 5 retainers (all microorganisms and all intervals combined, n = 270) was not significant (F = 1.860, P = 0.119). Nevertheless, the difference among 3 intervals (F = 31.607, P = 0.0000) and the difference among the 6 microorganisms (F = 24.044, P = 0.0000) were significant. According to the Tukey test, the differences between the 1st interval with either of the other two intervals was significant (both P values = 0.000). There were significant differences between Candida albicans with all other organisms (all 5 P values = 0.0000). All other pairwise comparisons were insignificant (all 10 P values ≥ 0.1). After taking the averages of the 3 intervals, the order of the biofilm generation for different materials were as follows: Detax (average score: 1.56), Easyvac (1.67), Erkodent (1.78), Clear Tech (1.83), BD (2.28). CONCLUSIONS As far as these 6 microorganisms are of concern, there might not be a significant overall difference among the clear retainer materials tested in this study. A significant overall increase was observed between the first and third days, which later did not significantly increase more until day 5. The Candida albicans biofilm was more intense than the tested 5 bacteria, which themselves showed rather similar growth patterns to each other.
Collapse
Affiliation(s)
- Mehrnaz Moradinezhad
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Hashemi Ashtiani
- Department of Prosthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pourlotfi
- School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Vahid Rakhshan
- Department of Dental Anatomy, Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mundada R, Tanpure SB, Mapare S, Karra A, Yannawar V, Gilani R. The Effect of Nanoparticles Against Streptococcus mutans in the Orthodontic Primer Used for Aligner Attachment: An In Vitro Study. Cureus 2024; 16:e68359. [PMID: 39355471 PMCID: PMC11443300 DOI: 10.7759/cureus.68359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Objective This study investigates the antimicrobial properties of silver (1%) and chitosan (1%) nanoparticles against Streptococcus mutans (S. mutans) when added to an orthodontic primer used for aligner attachments. While aligner treatments are becoming increasingly popular for their aesthetics and convenience, their attachments can create retention sites for bacteria, potentially leading to white spot lesions (WSLs). This in vitro study aims to address this issue by enhancing the antimicrobial efficacy of aligner primers. Methodology Thirty freshly extracted teeth were classified into the following three groups: Group A with the standard primer, Group B with chitosan nanoparticles mixed in the primer, and Group C with silver nanoparticles mixed in the primer. The samples were incubated with S. mutans and bacterial colonies were counted at 12, 24, 48, and 72 hours. Results The results showed a significant reduction in colony-forming units (CFUs) in the groups with nanoparticles compared to the control group, with silver nanoparticles exhibiting a higher antimicrobial effect than chitosan. Conclusions This study suggests that incorporating silver nanoparticles into orthodontic primers can effectively reduce bacterial growth, potentially improving oral hygiene and reducing the risk of WSLs in patients undergoing aligner treatment.
Collapse
Affiliation(s)
- Ram Mundada
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Saurabh B Tanpure
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Sagar Mapare
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Arjun Karra
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Vijay Yannawar
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Rizwan Gilani
- Department of Orthodontics and Dentofacial Orthopedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|