1
|
Déméautis T, Delles M, Tomaz S, Monneret G, Glehen O, Devouassoux G, George C, Bentaher A. Pathogenic Mechanisms of Secondary Organic Aerosols. Chem Res Toxicol 2022; 35:1146-1161. [PMID: 35737464 DOI: 10.1021/acs.chemrestox.1c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air pollution represents a major health problem and an economic burden. In recent years, advances in air pollution research has allowed particle fractionation and identification of secondary organic aerosol (SOA). SOA is formed from either biogenic or anthropogenic emissions, through a mass transfer from the gaseous mass to the particulate phase in the atmosphere. They can have deleterious impact on health and the mortality of individuals with chronic inflammatory diseases. The pleiotropic effects of SOA could involve different and interconnected pathogenic mechanisms ranging from oxidative stress, inflammation, and immune system dysfunction. The purpose of this review is to present recent findings about SOA pathogenic roles and potential underlying mechanisms focusing on the lungs; the latter being the primary exposed organ to atmospheric pollutants.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Marie Delles
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Sophie Tomaz
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Guillaume Monneret
- Pathophysiology of Immunosuppression Associated with Systemic Inflammatory Responses, EA7426 (PI3), Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Digestive and Endocrine Surgery Department, University Hospital of Lyon, Lyon South Hospital,165 Chemin du Grand Revoyet 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Pulmonology Department, Croix Rousse Hospital, Lyon Civil Hospices, Lyon 1 Claude Bernard University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Christian George
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
2
|
Jankowska-Kieltyka M, Roman A, Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front Cell Neurosci 2021; 15:647643. [PMID: 34248501 PMCID: PMC8264767 DOI: 10.3389/fncel.2021.647643] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.
Collapse
Affiliation(s)
- Monika Jankowska-Kieltyka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Roman
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
3
|
Abstract
Assessment of personal exposure to particulate matter with an aerodynamic diameter less than or 2.5 µm (PM2.5) is necessary to study the association between PM exposure and health risk. Development of a personal PM2.5 sensor or device is required for the evaluation of individual exposure level. In this study, we aimed to develop a small-sized, lightweight sensor with a global positioning system (GPS) attached that can measure PM2.5 and PM10 every second to assess continuous personal exposure levels. The participants in this study were apparently healthy housewives (n = 15) and university female teaching staff (n = 15) who live in a high PM2.5 area, Yangon, Myanmar. The average PM2.5 exposure levels during 24 h were 16.1 ± 10.0 µg/m3 in the housewives and 15.8 ± 4.0 µg/m3 in the university female teaching staff. The university female teaching staff showed high exposure concentrations during commuting hours, and had stable, relatively low concentrations at work, whereas the housewives showed short-term high exposure peaks due to differences in their lifestyles. This is the first study to show that a GPS-attached standalone PM2.5 and PM10 Sensor [PRO] can be successfully used for mobile sensing, easy use, continuous measurement, and rapid data analysis.
Collapse
|
4
|
Perinatal Exposure to Diesel Exhaust-Origin Secondary Organic Aerosol Induces Autism-Like Behavior in Rats. Int J Mol Sci 2021; 22:ijms22020538. [PMID: 33430368 PMCID: PMC7828068 DOI: 10.3390/ijms22020538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social communication, poor social interactions, and repetitive behaviors. We aimed to examine autism-like behaviors and related gene expressions in rats exposed to diesel exhaust (DE)-origin secondary organic aerosol (DE-SOA) perinatally. Sprague–Dawley pregnant rats were exposed to clean air (control), DE, and DE-SOA in the exposure chamber from gestational day 14 to postnatal day 21. Behavioral phenotypes of ASD were investigated in 10~13-week-old offspring using a three-chambered social behavior test, social dominance tube test, and marble burying test. Prefrontal cortex was collected to examine molecular analyses including neurological and immunological markers and glutamate concentration, using RT-PCR and ELISA methods. DE-SOA-exposed male and female rats showed poor sociability and social novelty preference, socially dominant behavior, and increased repetitive behavior. Serotonin receptor (5-HT(5B)) and brain-derived neurotrophic factor (BDNF) mRNAs were downregulated whereas interleukin 1 β (IL-β) and heme oxygenase 1 (HO-1) mRNAs were upregulated in the prefrontal cortex of male and female rats exposed to DE-SOA. Glutamate concentration was also increased significantly in DE-SOA-exposed male and female rats. Our results indicate that perinatal exposure to DE-SOA may induce autism-like behavior by modulating molecules such as neurological and immunological markers in rats.
Collapse
|
5
|
Tobías A, Rivas I, Reche C, Alastuey A, Rodríguez S, Fernández-Camacho R, Sánchez de la Campa AM, de la Rosa J, Sunyer J, Querol X. Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. ENVIRONMENT INTERNATIONAL 2018; 111:144-151. [PMID: 29207286 DOI: 10.1016/j.envint.2017.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/18/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Evidence on the short-term effects of ultrafine particles (with diameter<100nm, UFP) on health is still inconsistent. New particles in ambient urban air are the result of direct emissions and also the formation of secondary UFP from gaseous precursors. We segregated UFP into these two components and investigated their impact on daily mortality in three Spanish cities affected by different sources of air pollution. METHODS We separated the UFP using a method based on the high correlation between black carbon (BC) and particle number concentration (N). The first component accounts for aerosol constituents emitted by vehicle exhaust (N1) and the second for the photochemical new particle formation enhancements (N2). We applied city-specific Poisson regression models, adjusting for long-term trends, temperature and population dynamics. RESULTS Mean BC levels were higher in Barcelona and Tenerife (1.8 and 1.2μg·m-3, respectively) than in Huelva (0.8μg·m-3). While mean UFP concentrations were similar in the three cities, from which N1 was 40% in Barcelona, 46% in Santa Cruz de Tenerife, and 27% in Huelva. We observed an association with N1 and daily mortality in Barcelona, by increasing approximately 1.5% between lags 0 and 2, per an interquartile increase (IQR) of 3277cm-3, but not with N2. A similar pattern was found in Santa Cruz de Tenerife, although none of the associations were significant. Conversely, in the industrial city of Huelva mortality was associated with N2 at lag 0, by increasing 3.9% per an IQR of 12,032·cm-3. CONCLUSION The pattern and origin of UFP determines their short-term effect on human health. BC is possibly the better parameter to evaluate the health effects of particulate vehicle exhaust emissions, although in areas influenced by domestic solid fuel combustion this should also be taken into account.
Collapse
Affiliation(s)
- Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| | - Ioar Rivas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Sergio Rodríguez
- Joint Research Unit to CSIC "Studies on Atmospheric Pollution", Izaña Atmospheric Research Centre, AEMET, Santa Cruz de Tenerife, Spain
| | - Rocío Fernández-Camacho
- Centre Associate Unit CSIC-UHU "Atmospheric Pollution", Research in Sustainable Chemistry (CIQSO), University of Huelva, Huelva, Spain
| | - Ana M Sánchez de la Campa
- Centre Associate Unit CSIC-UHU "Atmospheric Pollution", Research in Sustainable Chemistry (CIQSO), University of Huelva, Huelva, Spain
| | - Jesús de la Rosa
- Centre Associate Unit CSIC-UHU "Atmospheric Pollution", Research in Sustainable Chemistry (CIQSO), University of Huelva, Huelva, Spain
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| |
Collapse
|
6
|
Nway NC, Fujitani Y, Hirano S, Mar O, Win-Shwe TT. Role of TLR4 in olfactory-based spatial learning activity of neonatal mice after developmental exposure to diesel exhaust origin secondary organic aerosol. Neurotoxicology 2017; 63:155-165. [DOI: 10.1016/j.neuro.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 01/24/2023]
|
7
|
Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1537-1546. [PMID: 27187980 PMCID: PMC5047762 DOI: 10.1289/ehp134] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. OBJECTIVE We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. METHODS Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. RESULTS After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. CONCLUSIONS These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. CITATION Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537-1546; http://dx.doi.org/10.1289/EHP134.
Collapse
Affiliation(s)
- Hank Cheng
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | | | - Caleb E. Finch
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| |
Collapse
|
8
|
Win-Shwe TT, Kyi-Tha-Thu C, Moe Y, Fujitani Y, Tsukahara S, Hirano S. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males. Front Neurosci 2016; 9:524. [PMID: 26834549 PMCID: PMC4724727 DOI: 10.3389/fnins.2015.00524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023] Open
Abstract
Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Environmental Health Sciences, National Institute for Environmental Studies Tsukuba, Japan
| | - Chaw Kyi-Tha-Thu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama City, Japan
| | - Yadanar Moe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama City, Japan
| | - Yuji Fujitani
- Center for Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama City, Japan
| | - Seishiro Hirano
- Center for Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| |
Collapse
|