1
|
Cuevas AL, Vega V, Domínguez A, González AS, Prida VM, Benavente J. Optical Characterization of ALD-Coated Nanoporous Alumina Structures: Effect of Sample Geometry or Coated Layer Material. MICROMACHINES 2023; 14:839. [PMID: 37421072 DOI: 10.3390/mi14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 07/09/2023]
Abstract
Optical characterization of nanoporous alumina-based structures (NPA-bSs), obtained by ALD deposition of a thin conformal SiO2 layer on two alumina nanosupports with different geometrical parameters (pore size and interpore distance), was performed by two noninvasive and nondestructive techniques such as spectroscopic ellipsometry (SE) and photoluminescence (Ph) spectra. SE measurements allow us to estimate the refraction index and extinction coefficient for the studied samples and their dependence with wavelength for the 250-1700 nm interval, showing the effect of sample geometry and cover-layer material (SiO2, TiO2, or Fe2O3), which significantly affect the oscillatory character of both parameters, as well as changes associated with the light incidence angle, which are attributed to surface impurities and inhomogeneity. Photoluminescence curves exhibit a similar shape independently of sample pore-size/porosity, but they seem to affect intensity values. This analysis shows the potential application of these NPA-bSs platforms to nanophotonics, optical sensing, or biosensing.
Collapse
Affiliation(s)
- Ana Laura Cuevas
- Unidad de Nanotecnología, SCBI Centro, Universidad de Málaga, E-29071 Málaga, Spain
| | - Víctor Vega
- Laboratorio de Membranas Nanoporosas, Servicicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Antonia Domínguez
- Unidad de Nanotecnología, SCBI Centro, Universidad de Málaga, E-29071 Málaga, Spain
| | - Ana Silvia González
- Departmento de Física, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain
| | - Víctor M Prida
- Departmento de Física, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain
| | - Juana Benavente
- Departmento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain
| |
Collapse
|
2
|
Algarra M, López Escalante MC, Martínez de Yuso MV, Soto J, Cuevas AL, Benavente J. Nanoporous Alumina Support Covered by Imidazole Moiety-Based Ionic Liquids: Optical Characterization and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234131. [PMID: 36500754 PMCID: PMC9736403 DOI: 10.3390/nano12234131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2023]
Abstract
This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I−V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.
Collapse
Affiliation(s)
- Manuel Algarra
- INAMAT-Institute for Advanced Materials and Mathematics, Departamento de Ciencias, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
| | - Mª Cruz López Escalante
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Mª Valle Martínez de Yuso
- X-ray Photoelectron Spectroscopy Lab., Central Service to Support Research Building (SCAI), University of Málaga, 29071 Málaga, Spain
| | - Juan Soto
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Ana L. Cuevas
- Unidad de Nanotecnología, Centro de Supercomputación y Bioinnovación, Servicios Centrales de Investigación, Universidad de Málaga, 29071 Málaga, Spain
| | - Juana Benavente
- Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
3
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
4
|
Cuevas A, Martínez de Yuso MV, Gelde L, González A, Vega V, Prida V, Benavente J. Chemical, optical and transport characterization of ALD modified nanoporous alumina based structures. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Basnig D, Vilá N, Herzog G, Walcarius A. Voltammetric behaviour of cationic redox probes at mesoporous silica film electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Optical and Electrochemical Characterization of Nanoporous Alumina Structures: Pore Size, Porosity, and Structure Effect. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three nanoporous alumina structures (NPASs) obtained by the two-step anodization method were optically and electrochemically characterized. Two of the structures were symmetric (NPAS-Sf and NPAS-Ph) and one was asymmetric (NPAS-And); pore size ranged from 10 nm to 100 nm and porosity was 12% in the case of the symmetrical NPAS and 23% and 30% for each surface of the asymmetric structure NPAS-And(A) and (B), respectively. Optical parameters of the studied samples (refraction index and extinction coefficient) were obtained from ellypsometric spectroscopy measurements carried out for wavelengths ranging between 250 nm and 1700 nm (visible and near infrared regions), with the total average refraction indices being 1.54, 1.52, 1.14, and 1.05 for NPAS-Sf, NPAS-Ph, NPAS-And(A), and NPAS-And(B), respectively, which indicates porosity control of refraction index values. Electrochemical characterizations (concentration potential and impedance spectroscopy measurements) were performed with NaCl solutions, and they allowed us to estimate samples of effective fixed charge concentration (1.22 × 10−2 M, 1.13 × 10−3 M, and 1.15 × 10−3 M), ion transport numbers, permselectivity (33.0%, 3.1%, and 9.6%), and the electrical resistance of each solution/sample system as well as the interfacial effects associated to solution concentration–polarization, which seems to be mainly controlled by pore size and sample symmetry.
Collapse
|
7
|
Leontiev AP, Volkova OY, Kolmychek IA, Venets AV, Pomozov AR, Stolyarov VS, Murzina TV, Napolskii KS. Tuning the Optical Properties of Hyperbolic Metamaterials by Controlling the Volume Fraction of Metallic Nanorods. NANOMATERIALS 2019; 9:nano9050739. [PMID: 31091697 PMCID: PMC6566159 DOI: 10.3390/nano9050739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022]
Abstract
Porous films of anodic aluminum oxide are widely used as templates for the electrochemical preparation of functional nanocomposites containing ordered arrays of anisotropic nanostructures. In these structures, the volume fraction of the inclusion phase, which strongly determines the functional properties of the nanocomposite, is equal to the porosity of the initial template. For the range of systems, the most pronounced effects and the best functional properties are expected when the volume fraction of metal is less than 10%, whereas the porosity of anodic aluminum oxide typically exceeds this value. In the present work, the possibility of the application of anodic aluminum oxide for obtaining hyperbolic metamaterials in the form of nanocomposites with the metal volume fraction smaller than the template porosity is demonstrated for the first time. A decrease in the fraction of the pores accessible for electrodeposition is achieved by controlled blocking of the portion of pores during anodization when the template is formed. The effectiveness of the proposed approach has been shown in the example of obtaining nanocomposites containing Au nanorods arrays. The possibility for the control over the position of the resonance absorption band corresponding to the excitation of collective longitudinal oscillations of the electron gas in the nanorods in a wide range of wavelengths by controlled decreasing of the metal volume fraction, is shown.
Collapse
Affiliation(s)
- Alexey P Leontiev
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Olga Yu Volkova
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Irina A Kolmychek
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anastasia V Venets
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Alexander R Pomozov
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vasily S Stolyarov
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
- Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia.
- All-Russian Research Institute of Automatics n.a. N.L. Dukhov (VNIIA), 127055, 119991 Moscow, Russia.
| | - Tatiana V Murzina
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Kirill S Napolskii
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Apel PY, Bobreshova OV, Volkov AV, Volkov VV, Nikonenko VV, Stenina IA, Filippov AN, Yampolskii YP, Yaroslavtsev AB. Prospects of Membrane Science Development. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619020021] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cheng Y, Feng G, Moraru CI. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front Microbiol 2019; 10:191. [PMID: 30846973 PMCID: PMC6393346 DOI: 10.3389/fmicb.2019.00191] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bacterial attachment to material surfaces can lead to the development of biofilms that cause severe economic and health problems. The outcome of bacterial attachment is determined by a combination of bacterial sensing of material surfaces by the cell and the physicochemical factors in the near-surface environment. This paper offers a systematic review of the effects of surface topography on a range of antifouling mechanisms, with a focus on how topographical scale, from micro- to nanoscale, may influence bacterial sensing of and attachment to material surfaces. A good understanding of these mechanisms can facilitate the development of antifouling surfaces based on surface topography, with applications in various sectors of human life and activity including healthcare, food, and water treatment.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | - Carmen I. Moraru
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Porta-I-Batalla M, Xifré-Pérez E, Eckstein C, Ferré-Borrull J, Marsal LF. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E227. [PMID: 28825654 PMCID: PMC5575709 DOI: 10.3390/nano7080227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer-Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst.
Collapse
Affiliation(s)
- Maria Porta-I-Batalla
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain.
| | - Elisabet Xifré-Pérez
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain.
| | - Chris Eckstein
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain.
| | - Josep Ferré-Borrull
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain.
| | - Lluis F Marsal
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain.
| |
Collapse
|
11
|
Vega V, Gelde L, González A, Prida V, Hernando B, Benavente J. Diffusive transport through surface functionalized nanoporous alumina membranes by atomic layer deposition of metal oxides. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Frontiers in Mesoporous Nanomaterials. NANOMATERIALS 2016; 6:nano6010015. [PMID: 28344272 PMCID: PMC5302534 DOI: 10.3390/nano6010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
|