1
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
2
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Tuba Gök
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Science, University of Lodz, Poland
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Choudhary P, Khajavinia A, Mohammadi R, Ng SH, Bérubé N, Yalamati D, Haddadi A, Wilson HL. A Single-Dose Intramuscular Nanoparticle Vaccine With or Without Prior Intrauterine Priming Triggers Specific Uterine and Colostral Mucosal Antibodies and Systemic Immunity in Gilts but Not Passive Protection for Suckling Piglets. Front Vet Sci 2022; 9:931232. [PMID: 35990278 PMCID: PMC9383261 DOI: 10.3389/fvets.2022.931232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
An effective single-dose vaccine that protects the dam and her suckling offspring against infectious disease would be widely beneficial to livestock animals. We assessed whether a single-dose intramuscular (i.m.) porcine epidemic diarrhea virus (PEDV) vaccine administered to the gilt 30 days post-breeding could generate mucosal and systemic immunity and sufficient colostral and mature milk antibodies to protect suckling piglets against infectious challenge. The vaccine was comprised of polymeric poly-(lactide-co-glycolide) (PGLA)-nanoparticle (NP) encapsulating recombinant PEDV spike protein 1 (PEDVS1) associated with ARC4 and ARC7 adjuvants, a muramyl dipeptide analog and a monophosphoryl lipid A (MPLA) analog, respectively (NP-PEDVS1). To establish whether prior mucosal exposure could augment the i.m. immune response and/or contribute to mucosal tolerance, gilts were immunized with the NP-PEDVS1 vaccine via the intrauterine route at breeding, followed by the i.m. vaccine 30 days later. Archived colostrum from gilts that were challenged with low-dose PEDV plus alum was used as positive reference samples for neutralizing antibodies and passive protection. On day 100 of gestation (70 days post i.m. immunization), both vaccinated groups showed significant PEDVS1-specific IgG and IgA in the serum, as well as in uterine tissue collected on the day of euthanasia. Anti-PEDVS1 colostral IgG antibody titers collected at farrowing were significantly higher relative to the negative control gilts indicating that the NP vaccine was effective in contributing to the colostral antibodies. The PEDVS1-specific colostral IgA and anti-PEDVS1 IgG and IgA antibodies in the mature milk collected 6 days after farrowing were low for both vaccinated groups. No statistical differences between the vaccinated groups were observed, suggesting that the i.u. priming vaccine did not induce mucosal tolerance. Piglets born to either group of vaccinated gilts did not receive sufficient neutralizing antibodies to protect them against infectious PEDV at 3 days of age. In summary, a single i.m. NP vaccine administered 30 days after breeding and a joint i.u./i.m. vaccine administered at breeding and 30 days post-breeding induced significant anti-PEDVS1 immunity in systemic and mucosal sites but did not provide passive protection in suckling offspring.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amir Khajavinia
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ramin Mohammadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathalie Bérubé
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Vaccinology and Immunotherapeutics Program at the School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Heather L. Wilson
| |
Collapse
|
4
|
Brennan K, Craven S, Cheung M, Kane D, Noone E, O'Callaghan J, Molloy EJ, Walsh PT, McAuliffe FM, Doyle SL. Cytosolic dsRNA improves neonatal innate immune responses to adjuvants in use in pediatric vaccines. J Leukoc Biol 2022; 112:523-537. [PMID: 35098572 PMCID: PMC9542317 DOI: 10.1002/jlb.5a0521-242r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pattern recognition receptors (PRRs) of the innate immune system represent the critical front‐line defense against pathogens, and new vaccine formulations target these PRR pathways to boost vaccine responses, through activation of cellular/Th1 immunity. The majority of pediatric vaccines contain aluminum (ALUM) or monophosphoryl lipid A (MPLA) as adjuvants to encourage immune activation. Evidence suggests that elements of the innate immune system, currently being targeted for vaccine adjuvanticity do not fully develop until puberty and it is likely that effective adjuvants for the neonatal and pediatric populations are being overlooked due to modeling of responses in adult systems. We recently reported that the activity of the cytosolic nucleic acid (CNA) sensing family of PRRs is strong in cord blood and peripheral blood of young children. This study investigates the function of CNA sensors in subsets of neonatal innate immune cells and shows that myeloid cells from cord blood can be activated to express T cell costimulatory markers, and also to produce Th1 promoting cytokines. CD80 and CD86 were consistently up‐regulated in response to cytosolic Poly(I:C) stimulation in all cell types examined and CNA activation also induced robust Type I IFN and low levels of TNFα in monocytes, monocyte‐derived macrophages, and monocyte‐derived dendritic cells. We have compared CNA activation to adjuvants currently in use (MPLA or ALUM), either alone or in combination and found that cytosolic Poly(I:C) in combination with MPLA or ALUM can improve expression of activation marker levels above those observed with either adjuvant alone. This may prove particularly promising in the context of improving the efficacy of existing ALUM‐ or MPLA‐containing vaccines, through activation of T cell‐mediated immunity.
Collapse
Affiliation(s)
- Kiva Brennan
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Simon Craven
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Maria Cheung
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Daniel Kane
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Eleanor Noone
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Joseph O'Callaghan
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Eleanor J Molloy
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Paediatrics School of Medicine, Trinity College Dublin Dublin Ireland
- Coombe Women and Infants University Hospital Dublin Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Sarah L Doyle
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| |
Collapse
|
5
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
6
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
7
|
Haddadi A, Chaffey A, Ng SH, Yalamati D, Wilson HL. Combination of Innate Immune Modulators as Vaccine Adjuvants in Mice. Vaccines (Basel) 2020; 8:E569. [PMID: 33019524 PMCID: PMC7712867 DOI: 10.3390/vaccines8040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new, effective, and safe vaccines necessarily requires the identification of new adjuvant(s) to enhance the potency and longevity of antigen-specific immune responses. In the present study, we compare the antibody-mediated and cell-mediated immune (CMI) responses within groups of mice vaccinated subcutaneously with ovalbumin (OVA; as an experimental antigen) plus polyphosphazene (an innate immune modulator), Polyinosinic:polycytidylic acid (poly-I:C; (an RNA mimetic) and glycopeptide ARC5 (which is a Toll-like receptor (TLR), TLR2 ligand and PAM3CSK4 analogue) formulated together in a soluble vaccine. We also investigated the effect of a polymeric nanoparticle of ARC4 and ARC7 (which are a novel muramyl dipeptide analogue and a monophosophoryl lipid A (MPLA) analogue, respectively) plus OVA +/- ARC5 as a subcutaneous vaccine in mice. OVA+ARC4/ARC7 nanoparticle +/- ARC5 triggered a robust and balanced Th1/Th2-type humoral response with significant anti-OVA IgA in serum, and significant interferon (IFN)-γ and interleukin (IL)-17 production in splenocytes after 35 days relative to the controls. Formulation of OVA with ARC4/ARC7 nanoparticles should be investigated for inducing protective immunity against infectious pathogens in mice and other species.
Collapse
Affiliation(s)
- Azita Haddadi
- Division of Pharmacy, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Alyssa Chaffey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| | | | - Heather L. Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| |
Collapse
|
8
|
|
9
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses. Vaccines (Basel) 2016; 4:vaccines4030032. [PMID: 27626449 PMCID: PMC5041026 DOI: 10.3390/vaccines4030032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022] Open
Abstract
The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP.
Collapse
|