1
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
2
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
3
|
Wei Y, Zhou Y, Wei Y, Dong C, Wang L. A fluorescent aptasensor based on berberine for ultrasensitive detection of bisphenol A in tap water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1816-1822. [PMID: 33885638 DOI: 10.1039/d1ay00180a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The residues of bisphenol A (BPA) in food packaging and water systems have a potential impact on human health; therefore, its analysis and detection have drawn scientists' attention. In this work, based on the change in fluorescence intensity resulting from the conformational switch of a berberine/BPA-aptamer system in the presence and absence of BPA, an ultra-sensitive fluorescence aptasensing system is proposed, in which BPA-aptamer is employed as the identification unit and berberine as the fluorescent probe. Various factors affecting the detection of BPA, including the concentration of the fluorescent probe, BPA-aptamer, BPA, pH, system stability time and other experimental conditions, were investigated in detail. Under the optimal experimental conditions, the fluorescence intensity of the sensing system of berberine/BPA-aptamer exhibited a good linear correlation with the BPA concentration in the range of 0-1300 μM with a LOD of 32 nM. The proposed fluorescent sensing system also exhibited excellent recoveries of 92.4-102.3% in tap water samples and showed good application prospects for the analysis and detection of BPA.
Collapse
Affiliation(s)
- Yuxin Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yangyang Zhou
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
4
|
Huang L, Wang X. Rapid and sensitive detection of Bisphenol A in water by LF-NMR based on magnetic relaxation switch sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Application of Aptamer-based Biosensor in Bisphenol A Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102339. [PMID: 33227538 DOI: 10.1016/j.nano.2020.102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA (miRNA) has emerged as a promising genetic marker for cancer diagnosis and therapy because its expression level is closely related to the progression of malignant diseases. Herein, a label-free and selective fluorescence platform was proposed for miRNA based on light-up "G-quadruplex nanostring" via duplex-specific nuclease (DSN) mediated tandem rolling circle amplification (RCA). First, a long DNA generated from upstream RCA was designed with the antisense sequences for miR-21 and downstream RCA primer. Upon recognizing miR-21, the resulting DNA-RNA permitted DSN digestion and triggered downstream two-way RCA, and generation of abundant "G-quadruplex nanostring" binding with ZnPPIX for label-free fluorescent responses. In our strategy, the strong preference of DSN for perfectly matched DNA/RNA ensures its excellent selectivity. The developed method generated wide linear response with LOD of 1.019 fM. Additionally, the miR-21 levels in cell extracts have been evaluated, revealing the utility of this tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Qi Liu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Xi-Luan Yan
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, China.
| | - Chenzhong Li
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| |
Collapse
|
7
|
Pan J, Liu Z, Chen J. An amplifying DNA circuit coupled with Mg 2+-dependent DNAzyme for bisphenol A detection in milk samples. Food Chem 2021; 346:128975. [PMID: 33429296 DOI: 10.1016/j.foodchem.2020.128975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
As bisphenol A (BPA) is harmful to human health, it is of great significance to develop a new method for BPA detection. Herein, we designed a BPA biosensor by integrating an amplifying DNA circuit with Mg2+-dependent DNAzyme into the sensing system. The BPA-aptamer binding activated a DNA circuit for signal amplification based on toehold-mediated strand displacement. A catalytic Mg2+-dependent DNAzyme was formed through synergistically DNA hybridization, which can cleave the dual-labeled substrate DNA into two segments. The separation of the fluorophore and quencher produces a high fluorescence response for BPA detection. This biosensor exhibited a superior sensitivity with a detection limit of 50 fM. The method is selective and robust, which can work even in milk samples with satisfactory accuracy. The biosensor analytical results were also verified by liquid chromatography coupled with mass spectrometry (LC-MS) and no obvious difference existed between the two methods.
Collapse
Affiliation(s)
- Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
8
|
Wang Y, Zhao X, Huo B, Ren S, Bai J, Peng Y, Li S, Han D, Wang J, Han T, Gao Z. Sensitive Fluorescence Aptasensor Based on Hybridization Chain Reaction with Upconversion Nanoparticles by Triplex DNA Formation for Bisphenol A Detection. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, P. R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
9
|
Multi-cycle signal-amplified colorimetric detection of tobramycin based on dual-strand displacement and three-way DNA junction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zhang H, Luo F, Wang P, Guo L, Qiu B, Lin Z. Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode. Biosens Bioelectron 2019; 129:36-41. [PMID: 30682687 DOI: 10.1016/j.bios.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
Abstract
A simple and sensitive electrochemiluminescence (ECL) aptasensor has been developed for bisphenol A (BPA) detection. The capture DNA (CDNA) was modified on the heated indium-tin-oxide (ITO) working electrode surface firstly and then hybridized with BPA aptamer to form double strand DNA (dsDNA). The presence of target can cause the releasing of aptamer from the electrode surface since the aptamer prefers to switch its configuration to combine with BPA. Subsequently, the free CDNA will induce hybridization chain reaction (HCR) to produce long dsDNA on the electrode surface. Ru(phen)32+ can integrate into the grooves of dsDNA to act as an ECL reagent, thus enhanced ECL signal can be detected. The temperature control during the processes of target recognition and HCR were realized through the heated electrode instead of the bulk solution heating. Furthermore, the performance of the ECL aptasensor can be further enhanced at elevated electrode temperature. Under the optimized conditions, the ECL intensity of the system has a linear relationship with the logarithm of BPA concentration in the range of 2.0 pM-50 nM. The limit of detection (LOD) at 55 °C (electrode surface temperature) was calculated to be 1.5 pM, which was approximately 6.5-fold lower than that at 25 °C. The proposed biosensor has been applied to detect the BPA in drink samples with satisfactory results.
Collapse
Affiliation(s)
- Huifang Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, P.R. China
| | - Fang Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Peilong Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
12
|
Yang W, Zhou X, Zhao J, Xu W. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Mikrochim Acta 2018; 185:100. [PMID: 29594400 DOI: 10.1007/s00604-017-2620-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023]
Abstract
A cascade nucleic acid amplification strategy is presented for fluorometric aptamer based determination of the model protein carcinoembryonic antigen (CEA). Amplification is accomplished by combining catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). In this assay, a specially designed single-stranded DNA containing the aptamer sequence (AS) specific for CEA is hybridized with an inhibitor strand (IS) to form a double-stranded DNA (IS@AS). In the presence of CEA, it will recognize and bind to the AS strand which causes the release of IS. By introducing two DNA hairpins (H1 and H2; these containing complementary sequences) CHA will be activated via the hybridization reactions of H1 and H2. This is accompanying by the formation of a double-stranded DNA (H1-H2) and the release of CEA@AS. The liberated CEA@AS further drives successive recycling of the CHA, thereby generating further copies of H1-H2. The resultant H1-H2 hybrids act as primers and trigger HCR with the help of other two DNA hairpins (H3 and H4) containing G-rich toehold at the 5'-terminus and 3'-terminus of H3 and H4, respectively. The fluorescent probe N-methyl mesoporphyrin IX (NMM) is finally intercalated into the G-rich domains of the long DNA nanostructures due to formation of G-quadruplex structures. This generates a fluorescent signal (best measured at excitation/emission wavelengths of 399/610 nm) that increases with the concentration of target (CEA). This aptamer-based fluorescence assay is highly sensitive and has a linear range that covers the 1 pg·mL-1 to 2 ng·mL-1 CEA concentration range, with a 0.3 pg·mL-1 detection limit. Graphical abstract By integrating catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) for effective signal enhancement, a novel cascade amplification strategy is presented to develop a sensitive and selective fluorescent method for the assay of the model protein carcinoembryonic antigen (CEA).
Collapse
Affiliation(s)
- Wenting Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingxing Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jianmin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
13
|
Li X, Song J, Xue Q, Zhao H, Liu M, Chen B, Liu Y, Jiang W, Li CZ. Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification. Analyst 2017; 142:3598-3604. [DOI: 10.1039/c7an01255a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing a sensitive and selective sensing platform for the p53 gene and its mutation analysis is essential and may aid in early cancer screening and assessment of prognosis.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
| | - Juan Song
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Qingwang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Min Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Baoli Chen
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Yun Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Chen-zhong Li
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
- Nanobioengineering/Bioelectronics Laboratory
| |
Collapse
|